[comp.lsi] SPICE / floating-point benchmarks

mark@mips.UUCP (Mark G. Johnson) (07/04/87)

One widely available floating-point benchmark program is SPICE, a
circuit simulator.  Unfortunately, few public-domain input
circuits have been published, and those which have been published
(e.g. the examples on the Berkeley distribution tape) represent
"toy" circuits, not real world engineering problems.  This article
proposes three new public-domain input circuits which are better
approximations of actual SPICE applications.  SPICE runtimes are
400 - 1300 VAX CPU seconds, allowing medium-high precision timing
measurements even with a 60 Hz clock.

The benchmark circuits are
    DIGSR:    9-bit digital shift register in 2 micron CMOS
    BIPOLE:   register / clock synchronizer in bipolar TTL
   *TORONTO:  Auto-zeroed precision comparator in 3 micron CMOS
	* supplied by Mark Moraes, Univ. of Toronto.  Thanks!!

They are included below in 'shar' format.  A companion article
gives measured performance on a couple of machines (e.g. vax).

A low-level detail: the SPICE options "gmin" and "abstol" are
set to aid convergence on a wide variety of machines and
floating-point formats; with these settings the benchmarks
have run successfully on hardware manufactured by Motorola, DEC,
MIPS, and Weitek.  Simulation accuracy has not been noticeably
degraded.

I'd be _very_ interested in any comments or suggestions for
improvements (additional benchmarks are welcome too!).  Please
email to me; I'll summarize for the net.

#--------------------------Cut Here--------------------------
#! /bin/sh
# This is a shell archive.  Remove anything before the "#! /bin/sh" line,
# then unpack it by saving it in a file and typing "sh file."
#
# Wrapped by Mark Johnson,,,,obiwan,open  on Fri Jul  3 22:40:09 1987
#
# unpacks with default permissions
#
# Contents : digsr bipole toronto
#
if `test ! -s digsr`
then
echo "x - digsr"
cat > digsr << '@\Rogue\Monster\'
* file DIGSR:     CMOS digital shift register test case for SPICE
*
*
*
.options          acct   itl1=300   gmin=1e-11   abstol=1e-9
+                 limpts=205
.width out=133
*
*
.tran  0.2ns   40ns
*
**********************************************************************
*
*      Power supplies
*
*
vd    100    0    dc 5.0
vss   199    0    dc 0.0
*
rcc   100    199    1e6
*
**********************************************************************
*
*     Input wiggles  (piecewise linear waveforms)
*
*
*
vld    210  0     pwl(  0ns 5.0    1ns 5.0    3ns 0v    10ns 0v
*
vldb   220  0     pwl(  0ns 0v    1ns 0v    3ns 5.0    10ns 5.0 )
*
*
vck    250  0     pwl(  0ns 5.0    3ns 5.0    6ns 0v     8ns 0v
+                      11ns 5.0   13ns 5.0   16ns 0v    18ns 0v
+                      21ns 5.0   23ns 5.0   26ns 0v    28ns 0v
+                      31ns 5.0   33ns 5.0   36ns 0v    38ns 0v )
*
vckb   260  0     pwl(  0ns 0v    3ns 0v    6ns 5.0     8ns 5.0
+                      11ns 0v   13ns 0v   16ns 5.0    18ns 5.0
+                      21ns 0v   23ns 0v   26ns 5.0    28ns 5.0
+                      31ns 0v   33ns 0v   36ns 5.0    38ns 5.0 )
*
*
vdin   290  0     pwl(  0ns 0v    6ns 0v    8ns 5.0    16ns 5.0
+                      18ns 0v   26ns 0v   28ns 5.0    36ns 5.0
+                      38ns 0v   40ns 0v )
*
*
*
ra1a   210  0     100K
ra2a   220  0     100K
ra3a   250  0     100K
ra4a   260  0     100K
ra5a   290  0     100K
*
*
.ic    v(301)=0.00
+      v(311)=5.00
+      v(321)=0.00
+      v(331)=5.00
+      v(341)=0.00
+      v(351)=0.00
+      v(361)=5.00
+      v(371)=0.00
+      v(381)=5.00
*
*
**********************************************************************
**********************************************************************
**********************************************************************
*
*     Circuit Hookup  (definition and interconnection)
*
*
*
*
*
*
*
*
*
*
m900 290  250   301 100   p   w=5u    l=2u  ad=40p  pd=20u
m901 290  260   301 199   n   w=5u    l=2u  ad=40p  pd=20u
m902 199  220   301 100   p   w=5u    l=2u  ad=40p  pd=20u
m903 199  210   301 199   n   w=5u    l=2u  ad=40p  pd=20u
m904 302  301 100   100   p   w=30u   l=2u  ad=240p pd=45u
m905 302  301 199   199   n   w=15u   l=2u  ad=120p pd=30u
m906 302  260   303 100   p   w=5u    l=2u  ad=40p  pd=20u
m907 302  250   303 199   n   w=5u    l=2u  ad=40p  pd=20u
m908 309  303 100   100   p   w=30u   l=2u  ad=240p pd=45u
m909 309  303 199   199   n   w=15u   l=2u  ad=120p pd=30u
*
*
m910 309  250   311 100   p   w=5u    l=2u  ad=40p  pd=20u
m911 309  260   311 199   n   w=5u    l=2u  ad=40p  pd=20u
m912 100  220   311 100   p   w=5u    l=2u  ad=40p  pd=20u
m913 100  210   311 199   n   w=5u    l=2u  ad=40p  pd=20u
m914 312  311 100   100   p   w=30u   l=2u  ad=240p pd=45u
m915 312  311 199   199   n   w=15u   l=2u  ad=120p pd=30u
m916 312  260   313 100   p   w=5u    l=2u  ad=40p  pd=20u
m917 312  250   313 199   n   w=5u    l=2u  ad=40p  pd=20u
m918 319  313 100   100   p   w=30u   l=2u  ad=240p pd=45u
m919 319  313 199   199   n   w=15u   l=2u  ad=120p pd=30u
*
*
m920 319  250   321 100   p   w=9u    l=2u  ad=40p  pd=20u
m921 319  260   321 199   n   w=9u    l=2u  ad=40p  pd=20u
m922 199  220   321 100   p   w=4u    l=2u  ad=40p  pd=20u
m923 199  210   321 199   n   w=20u   l=2u  ad=40p  pd=20u
m924 322  321 100   100   p   w=70u   l=2u  ad=240p pd=45u
m925 322  321 199   199   n   w=35u   l=2u  ad=120p pd=30u
m926 322  260   323 100   p   w=5u    l=2u  ad=40p  pd=20u
m927 322  250   323 199   n   w=5u    l=2u  ad=40p  pd=20u
m928 329  323 100   100   p   w=20u   l=2u  ad=240p pd=45u
m929 329  323 199   199   n   w=10u   l=2u  ad=120p pd=30u
*
*
m930 329  250   331 100   p   w=5u    l=2u  ad=40p  pd=20u
m931 329  260   331 199   n   w=5u    l=2u  ad=40p  pd=20u
m932 100  220   331 100   p   w=5u    l=2u  ad=40p  pd=20u
m933 100  210   331 199   n   w=5u    l=2u  ad=40p  pd=20u
m934 332  331 100   100   p   w=30u   l=2u  ad=240p pd=45u
m935 332  331 199   199   n   w=15u   l=2u  ad=120p pd=30u
m936 332  260   333 100   p   w=5u    l=2u  ad=40p  pd=20u
m937 332  250   333 199   n   w=5u    l=2u  ad=40p  pd=20u
m938 339  333 100   100   p   w=30u   l=2u  ad=240p pd=45u
m939 339  333 199   199   n   w=15u   l=2u  ad=120p pd=30u
*
*
m940 339  250   341 100   p   w=5u    l=2u  ad=40p  pd=20u
m941 339  260   341 199   n   w=5u    l=2u  ad=40p  pd=20u
m942 199  220   341 100   p   w=5u    l=2u  ad=40p  pd=20u
m943 199  210   341 199   n   w=5u    l=2u  ad=40p  pd=20u
m944 342  341 100   100   p   w=30u   l=2u  ad=240p pd=45u
m945 342  341 199   199   n   w=15u   l=2u  ad=120p pd=30u
m946 342  260   343 100   p   w=5u    l=2u  ad=40p  pd=20u
m947 342  250   343 199   n   w=5u    l=2u  ad=40p  pd=20u
m948 349  343 100   100   p   w=30u   l=2u  ad=240p pd=45u
m949 349  343 199   199   n   w=15u   l=2u  ad=120p pd=30u
*
*
m950 349  250   351 100   p   w=9u    l=2u  ad=40p  pd=20u
m951 349  260   351 199   n   w=9u    l=2u  ad=40p  pd=20u
m952 199  220   351 100   p   w=4u    l=2u  ad=40p  pd=20u
m953 199  210   351 199   n   w=20u   l=2u  ad=40p  pd=20u
m954 352  351 100   100   p   w=70u   l=2u  ad=240p pd=45u
m955 352  351 199   199   n   w=35u   l=2u  ad=120p pd=30u
m956 352  260   353 100   p   w=5u    l=2u  ad=40p  pd=20u
m957 352  250   353 199   n   w=5u    l=2u  ad=40p  pd=20u
m958 359  353 100   100   p   w=20u   l=2u  ad=240p pd=45u
m959 359  353 199   199   n   w=10u   l=2u  ad=120p pd=30u
*
*
m960 359  250   361 100   p   w=9u    l=2u  ad=40p  pd=20u
m961 359  260   361 199   n   w=9u    l=2u  ad=40p  pd=20u
m962 100  220   361 100   p   w=4u    l=2u  ad=40p  pd=20u
m963 100  210   361 199   n   w=20u   l=2u  ad=40p  pd=20u
m964 362  361 100   100   p   w=70u   l=2u  ad=240p pd=45u
m965 362  361 199   199   n   w=35u   l=2u  ad=120p pd=30u
m966 362  260   363 100   p   w=5u    l=2u  ad=40p  pd=20u
m967 362  250   363 199   n   w=5u    l=2u  ad=40p  pd=20u
m968 369  363 100   100   p   w=20u   l=2u  ad=240p pd=45u
m969 369  363 199   199   n   w=10u   l=2u  ad=120p pd=30u
*
*
m970 369  250   371 100   p   w=5u    l=2u  ad=40p  pd=20u
m971 369  260   371 199   n   w=5u    l=2u  ad=40p  pd=20u
m972 199  220   371 100   p   w=5u    l=2u  ad=40p  pd=20u
m973 199  210   371 199   n   w=5u    l=2u  ad=40p  pd=20u
m974 372  371 100   100   p   w=30u   l=2u  ad=240p pd=45u
m975 372  371 199   199   n   w=15u   l=2u  ad=120p pd=30u
m976 372  260   373 100   p   w=5u    l=2u  ad=40p  pd=20u
m977 372  250   373 199   n   w=5u    l=2u  ad=40p  pd=20u
m978 379  373 100   100   p   w=30u   l=2u  ad=240p pd=45u
m979 379  373 199   199   n   w=15u   l=2u  ad=120p pd=30u
*
*
m980 379  250   381 100   p   w=5u    l=2u  ad=40p  pd=20u
m981 379  260   381 199   n   w=5u    l=2u  ad=40p  pd=20u
m982 100  220   381 100   p   w=5u    l=2u  ad=40p  pd=20u
m983 100  210   381 199   n   w=5u    l=2u  ad=40p  pd=20u
m984 382  381 100   100   p   w=30u   l=2u  ad=240p pd=45u
m985 382  381 199   199   n   w=15u   l=2u  ad=120p pd=30u
m986 382  260   383 100   p   w=5u    l=2u  ad=40p  pd=20u
m987 382  250   383 199   n   w=5u    l=2u  ad=40p  pd=20u
m988 389  383 100   100   p   w=30u   l=2u  ad=240p pd=45u
m989 389  383 199   199   n   w=15u   l=2u  ad=120p pd=30u
*
*
*
*
**********************************************************************
*
*      Outputs (raw output from Spice)
*
*
*
*
.print   tran  v(309)   v(319)   v(339)   v(349)
+              v(359)   v(369)   v(379)   v(389)
*
*
*
**********************************************************************
*
*   MOS model parameters for 2 micron CMOS
*
.model n nmos
+   level=2        vto=0.7        tox=400e-10
+   nsub=9e15      xj=0.15u       ld=0.20u
+   uo=666         ucrit=.65e5    uexp=0.123
+   vmax=5e4       neff=4.0       delta=1.4
+   rsh=36         cgso=200p      cgdo=200p
+   cj=200u        cjsw=500p      mj=0.75
+   mjsw=0.30      pb=0.80        nfs=1e11
*
*
.model p pmos
+   level=2        vto=-0.70      tox=400e-10
+   nsub=7e15      xj=0.06u       ld=0.20u
+   uo=250         ucrit=.85e5    uexp=0.3
+   vmax=3e4       neff=2.65      delta=1.0
+   rsh=100        cgso=190p      cgdo=190p
+   cj=250u        cjsw=350p      mj=.55
+   mjsw=0.34      pb=0.80        nfs=1e11
*
**********************************************************************
*
*
*
*
.end
@\Rogue\Monster\
else
  echo "shar: Will not over write digsr"
fi
if `test ! -s bipole`
then
echo "x - bipole"
cat > bipole << '@\Rogue\Monster\'
* file BIPOLE: Schottky TTL edge-triggered register
*
*
.options          acct   gmin=1e-11   abstol=1e-9   limpts=404
.width out=133
*
.tran  0.1ns   18ns
*
**********************************************************************
*
*      Power supplies
*
vcc   100    0    dc    5.0
*
rcc   100    0          1e6
*
**********************************************************************
*
*     Input wiggles  (piecewise linear waveforms)
*
vin    170  0     pwl(  0ns 4.0   1ns 4.0   3ns 0.0     10ns 0.0 )
*
vinb   171  0     pwl(  0ns 4.0   1ns 4.0   3ns 0.06    10ns 0.0 )
*
*
ra1a   170  0     100K
*
*
.NODESET   V(250)=0.1
+          V(260)=0.1
+          V(350)=4.0
+          V(360)=4.0
+          V(450)=0.1
+          V(460)=4.0
+          V(550)=4.0
+          V(560)=0.1
*
*
**********************************************************************
**********************************************************************
*
*     Circuit Hookup  (definition and interconnection)
*
*
.SUBCKT   NAND3   201   202   203   100   400
*
* triple emitter transistor
R1    100   301         2.8K
Q1A   302   301   201   XNPN
Q1B   302   301   202   XNPN
Q1C   302   301   203   XNPN
*
* phase splitter
R2    100   311         900
Q2    311   302   312   XNPN
D2Q   302   311         SD
*
* squaring network
R3    312   313         500
R4    312   314         250
Q3    314   313   0     XNPN
D3Q   313   314         SD
*
* darlington pullup network
R5    100   321         40.0
Q4    321   311   322   XNPN
D4Q   311   321         SD
Q5    321   322   400   XNPN
R6    322   0           3.5K
*
* output pulldown
Q6    400   312   0     XNPN
D6Q   312   400         SD
*
*
.ENDS NAND3
*
*
*
*
*
* Inverters to create TTL-driven waveforms
*
R201   100   201   400.0
XNG1   170   201   201   100   250     NAND3
XNG2   171   201   201   100   260     NAND3
C250   250   0     40P
C260   260   0     40P
*
*
*
*
* Bottom flipflop
*
R301   100   301   400.0
XNG3   250   460   360   100   350     NAND3
XNG4   260   301   350   100   360     NAND3
C350   350   0     2P
C360   360   0     2P
*
XNG4x  260   301   301   100   367     NAND3
*
*
* Top flipflop
*
R401   100   401   400.0
XNG5   360   401   460   100   450     NAND3
XNG6   250   401   450   100   460     NAND3
*
XNG6x  450   450   401   100   467     NAND3
*
*
*
* Output flipflop
*
R501   100   501   400.0
XNG7   460   501   560   100   550     NAND3
XNG8   350   501   550   100   560     NAND3
C550   550   0     40P
C560   560   0     40P
*
*
*
**********************************************************************
*
*      Outputs (raw output from Spice)
*
*
*
*
.print   tran  v(250)   v(260)   v(350)   v(360)
+              v(450)   v(460)   v(550)   v(560)
*
*
*
*
**********************************************************************
* bipolar circuit models
*
.MODEL   SD       D(  RS=20   CJO=0.1P   IS=5E-10   EG=0.69  )
*
*
.MODEL   XNPN   NPN(  BF=50     BR=1   RB=70   RC=5   CCS=0.8P
+                     TF=0.05E-9   TR=4E-9   IS=1E-14
+                     CJE=0.4P   CJC=0.4P   PC=0.85   VA=40 )
*
*
**********************************************************************
*
*
*
*
.end
@\Rogue\Monster\
else
  echo "shar: Will not over write bipole"
fi
if `test ! -s toronto`
then
echo "x - toronto"
cat > toronto << '@\Rogue\Monster\'
* FILE TORONTO:      SPICE SIMULATION OF DIFFERENTIAL COMPARATOR
*    SOURCE: MARK MORAES, UNIVERSITY OF TORONTO {...!decwrl!utcsri!moraes}
*
* LABELS
**************************************
*
* VDD =  +5.0 volt supply (analog vdd)
* Vdgt = +5.0 volt supply (digital vdd)
* VSS =   0.0 volt supply (analog gnd)
* Vpos = positive input
* Vneg = negative input
*
* vphi1 = PHI1 input clock
* vphi2 = PHI2 input clock
* vphi3 = PHI3 input clock
*
* phi1b = #PHI1 input clock (PHI1 bar)
* phi2b = #PHI2 input clock (PHI2 bar)
* phi3b = #PHI3 input clock (PHI3 bar)
*
*************************************
* VOLTAGE SOURCES *******************
*************************************
VDD 1 0 DC 5.0V
VSS 4 0 DC 0.0V
Vdgt 27 0 DC 5.0V
*
VPOS 13 0 PULSE(-10.0E-5 10.0E-5 0 10NS 10NS 990NS 2000NS)
VNEG 19 0 PULSE(10.0E-5 -10.0E-5 0 10NS 10NS 990NS 2000NS)
*
Vphi1 14 0 PULSE(5.0 0.0 250NS 10NS 10NS 730NS 1000NS)
Vphi2 18 0 PULSE(0.0 5.0 260NS 10NS 10NS 710NS 1000NS)
Vphi3 26 0 PULSE(0.0 5.0 670NS 10NS 10NS 300NS 1000NS)
*
Vphi1b 16 0 PULSE(0.0 5.0 250NS 10NS 10NS 730NS 1000NS)
Vphi2b 20 0 PULSE(5.0 0.0 260NS 10NS 10NS 710NS 1000NS)
Vphi3b 8 0 PULSE(5.0 0.0 670NS 10NS 10NS 300NS 1000NS)
*
*************************
* LABELS
* ************************
* Vout+ = node 24
* Vout- = node 6
* Vpos  = node 13
* Vphi1  = node 14
* Vphi2  = node 18
* Vphi3  = node 26
**************************
* HINTS FOR DC CONVERGENCE
*    (added on 06 May 1987....MGJ)
*
.NODESET   V(5)=1.229
+          V(7)=1.229
+          V(9)=1.486
+         V(10)=1.497
+         V(11)=2.823
+         V(17)=2.987
+         V(21)=3.720
+         V(22)=1.486
**************************
*
M1 6 5 4 0 NMOS L=3.0U W=21.0U
M2 4 5 6 0 NMOS L=3.0U W=21.0U
M3 6 5 4 0 NMOS L=3.0U W=21.0U
M4 4 5 6 0 NMOS L=3.0U W=21.0U
M5 6 8 7 1 PMOS L=3.0U W=13.5U
M6 4 10 9 0 NMOS L=3.0U W=18.0U
M7 9 12 11 1 PMOS L=3.0U W=24.0U
M8 11 12 9 1 PMOS L=3.0U W=36.0U
M9 9 12 11 1 PMOS L=3.0U W=36.0U
M10 11 12 9 1 PMOS L=3.0U W=36.0U
M11 9 12 11 1 PMOS L=3.0U W=36.0U
M12 11 12 9 1 PMOS L=3.0U W=36.0U
M13 9 12 11 1 PMOS L=3.0U W=36.0U
M14 15 14 13 0 NMOS L=3.0U W=6.0U
M15 15 16 13 1 PMOS L=3.0U W=13.5U
M16 17 9 4 0 NMOS L=3.0U W=4.5U
M17 19 18 15 0 NMOS L=3.0U W=6.0U
M18 19 20 15 1 PMOS L=3.0U W=13.5U
M19 6 16 5 1 PMOS L=3.0U W=13.5U
M20 1 17 17 1 PMOS L=3.0U W=6.0U
M21 1 21 6 1 PMOS L=3.0U W=21.0U
M22 6 21 1 1 PMOS L=3.0U W=21.0U
M23 1 21 6 1 PMOS L=3.0U W=21.0U
M24 6 21 1 1 PMOS L=3.0U W=21.0U
M25 10 17 1 1 PMOS L=6.0U W=6.0U
M26 1 21 11 1 PMOS L=3.2U W=119.9U
M27 4 22 17 0 NMOS L=3.0U W=4.5U
M28 23 18 13 0 NMOS L=3.0U W=6.0U
M29 23 20 13 1 PMOS L=3.0U W=13.5U
M30 24 16 7 1 PMOS L=3.0U W=13.5U
M31 1 21 24 1 PMOS L=3.0U W=21.0U
M32 24 21 1 1 PMOS L=3.0U W=21.0U
M33 1 21 24 1 PMOS L=3.0U W=21.0U
M34 24 21 1 1 PMOS L=3.0U W=21.0U
M35 4 10 10 0 NMOS L=3.0U W=4.5U
M36 21 4 4 1 PMOS L=58.5U W=6.0U
M37 19 14 23 0 NMOS L=3.0U W=6.0U
M38 19 16 23 1 PMOS L=3.0U W=13.5U
M39 22 10 4 0 NMOS L=3.0U W=18.0U
M40 1 21 21 1 PMOS L=3.0U W=6.0U
M41 22 25 11 1 PMOS L=3.0U W=24.0U
M42 11 25 22 1 PMOS L=3.0U W=36.0U
M43 22 25 11 1 PMOS L=3.0U W=36.0U
M44 11 25 22 1 PMOS L=3.0U W=36.0U
M45 22 25 11 1 PMOS L=3.0U W=36.0U
M46 11 25 22 1 PMOS L=3.0U W=36.0U
M47 22 25 11 1 PMOS L=3.0U W=36.0U
M48 5 8 24 1 PMOS L=3.0U W=13.5U
M49 24 7 4 0 NMOS L=3.0U W=21.0U
M50 4 7 24 0 NMOS L=3.0U W=21.0U
M51 24 7 4 0 NMOS L=3.0U W=21.0U
M52 4 7 24 0 NMOS L=3.0U W=21.0U
M53 24 26 5 0 NMOS L=3.0U W=6.0U
M54 24 14 7 0 NMOS L=3.0U W=6.0U
C55 16 25 7.0F
M56 22 14 25 0 NMOS L=3.0U W=12.0U
C57 7 22 1006.0F
C58 23 25 2071.0F
C59 16 12 7.0F
M60 9 14 12 0 NMOS L=3.0U W=12.0U
M61 6 26 7 0 NMOS L=3.0U W=6.0U
C62 15 12 2071.0F
C63 5 9 1006.0F
M64 6 14 5 0 NMOS L=3.0U W=6.0U
C65 4 0 674.0F
C66 16 0 441.0F
C67 14 0 326.0F
C68 27 0 1163.0F
C69 25 0 605.0F
C70 22 0 417.0F
C71 23 0 237.0F
C72 7 0 285.0F
C73 24 0 127.0F
C74 26 0 119.0F
C75 5 0 293.0F
C76 8 0 74.0F
C77 11 0 240.0F
C78 1 0 412.0F
C79 21 0 181.0F
C80 18 0 159.0F
C81 20 0 58.0F
C82 19 0 64.0F
C83 10 0 61.0F
C84 13 0 63.0F
C85 17 0 76.0F
C86 6 0 125.0F
C87 9 0 418.0F
C88 15 0 238.0F
C89 12 0 607.0F
***************************
* ADD LOAD CAPACITORS
*
CL1 24 0 1.0P
CL2 6 0 1.0P
*
**************************
* BIAS NETWORK STARTUP RESISTOR
*    (added on 06 May 1987....MGJ)
RCX1 17 10 4E7
*
*************************************
* TRANSISTOR MODELS FOR CMOS3 DEVICES 
****************************************
.MODEL NMOS NMOS( LEVEL=3,      TOX=.50E-7,   LD=0.26U,    UO=785,
+                 PHI=0.73,     KAPPA=1,      RSH=26,      CGSO=3E-10,
+                 CGDO=3E-10,   CGBO=2E-10,   CJSW=5.6E-10,MJSW=.5,
+                 CJ=8E-4,      MJ=.5,        VMAX=1E5,   
+                 THETA=.110,   VTO=0.90,     GAMMA=1.15,  NSUB=4.0E16)
.MODEL PMOS PMOS( LEVEL=3,      TOX=.50E-7,   LD=0.17U,    UO=265,
+                 PHI=0.65,     KAPPA=1,      RSH=80,      CGSO=3E-10,
+                 CGDO=3E-10,   CGBO=2E-10,   CJSW=3.4E-10,MJSW=.5,
+                 CJ=3.6E-4,    MJ=.5,        VMAX=6.6E4, 
+                 THETA=.135,   VTO=-0.74,    GAMMA=0.40,  NSUB=6E15)
.WIDTH OUT=80
.TRAN 10NS 2000NS
.OPTIONS          ACCT   GMIN=1E-11   ABSTOL=1E-9
+                 LIMPTS=500
.PRINT TRAN V(24,6) V(26) V(13,19)
.PRINT TRAN V(24) V(6) V(26) V(13) V(19)
.END
@\Rogue\Monster\
else
  echo "shar: Will not over write toronto"
fi
# to concatenate archives, remove anything after this line
exit 0

-- 
-Mark Johnson	*** DISCLAIMER: The opinions above are personal. ***	
UUCP: {decvax,ucbvax,ihnp4}!decwrl!mips!mark   TEL: 408-720-1700 x208
US mail: MIPS Computer Systems, 930 E. Arques, Sunnyvale, CA 94086