krab@iesd.auc.dk (Kresten Krab Thorup) (01/23/91)
Hello folks.. here's one for your brain! We've made a `parser' which parses an normal math expression to reversed polish notation : For example {\math 2+4*x} gives: 2 4 x mul add The problem now is: We'd like to be able to put the parsed expression into a \special, so this coudt be used for example to draw a arbitrary graph based on the expression (using a PostScript printer) like this: \drawfunc[Xmin,Xmax]{expression} to produce a nice graph of the expression in the given interval [Xmin,Xmax] ..... Think of: \drawfunc[-2,2]{x^2-1} | | | | \ + 1 / \ | / 2 3 -------+---+---+---+---+---- \ | / `-+-' -1 | + -2 | Nice... right? Now take a look at this piece of code which is executable with TeX.. It includes some examples so you can se that it works... %--------------------cut here----------------------- { \catcode`@=11 \catcode`+ =\active% \catcode`- =\active% \catcode`* =\active% \catcode`/ =\active% \catcode`^ =\active% \catcode`( =\active \catcode`) =\active % \catcode`[ =\active \catcode`] =\active % \gdef\math{\relax% % \def\@add{ add}% \def\@sub{ sub}% \def\@mul{ mul}% \def\@div{ div}% \def\@exp{ exp\egroup}% \def\@neg{ neg\egroup}% % \def\@sin{ sin\egroup}% \def\@cos{ cos\egroup}% \def\@tan{ dup sin exch cos div\egroup}% \def\@abs{ abs\egroup}% \def\@sqrt{ sqrt\egroup}% \def\@ln{ ln\egroup}% \def\@log{ log\egroup}% \def\@round{ round\egroup}% \def\@trunc{ truncate\egroup}% % \catcode`+\active% \catcode`-\active% \catcode`*\active% \catcode`/\active% \catcode`^\active% \def-{\egroup\egroup\egroup\space\bgroup\aftergroup\@sub\bgroup\bgroup}% % - subtract \def+{\egroup\egroup\egroup\space\bgroup\aftergroup\@add\bgroup\bgroup}% + add \def*{\egroup\egroup\space\bgroup\aftergroup\@mul\bgroup}% * multiply \def/{\egroup\egroup\space\bgroup\aftergroup\@div\bgroup}% / divide \def^{\space\bgroup\aftergroup\@exp}% ^ raise to power of \def~{\bgroup\aftergroup\@neg}% ~ unary minus (negation) % \def\sin{\bgroup\aftergroup\@sin}% \sin(angle) sine \def\cos{\bgroup\aftergroup\@cos}% \cos(angle) cosine \def\tan{\bgroup\aftergroup\@tan}% \tan(angle) tangens \def\abs{\bgroup\aftergroup\@abs}% \abs(real) = max(real,-real) \def\round{\bgroup\aftergroup\@round}% \round(real) = trunc(real+0.5) \def\trunc{\bgroup\aftergroup\@truncate}% \trunc(real) = integer % part of `real' \def\sqrt{\bgroup\aftergroup\@sqrt}% \sqrt(real) = square root % of `real' \def\ln{\bgroup\aftergroup\@ln}% \ln(real) = natural log \def\log{\bgroup\aftergroup\@log}% \log(real) = 10-log % \catcode`(\active \catcode`)\active \catcode`[\active \catcode`]\active \def({\bgroup\bgroup\bgroup} \def){\egroup\egroup\egroup} \let[(\let])% }} % % some examples... % \begingroup\math [\sin((a+1)/2)] % gives: a 1 add 2 div sin [2+3*\sin\cos4] % gives: 2 3 4 cos sin mul add [\cos(a+1/2)] % gives: a 1 2 div add cos [\tan(4)] % gives: 4 dup sin exch cos div [\ln(37*x^4)] % gives: 37 x 4 exp mul ln = ln(37*(x^4)) [\ln(37^x*4)] % gives: 37 x exp 4 mul ln = ln((37^x)*4) [x-2+3] % gives: x 2 sub 3 add [x-(2+3)] % gives: x 2 3 add sub [a/b*c] % gives: a b div c mul [a/(b*c)] % gives: a b c mul div [2+3^b*4] % gives: 2 3 b exp 4 mul add [2^3^4] % gives: 2 3 4 exp exp [(2^3)^4] % gives: 2 3 exp 4 exp [\sin3^4] % gives: 3 4 exp sin [(\sin3)^4] % gives: 3 sin 4 exp [3+~\sin~5] % gives: 3 5 neg sin neg add \endgroup \end %----------------------end-------------------------- You see... it includes a lot of grouping trickery, and our problem seems to be, that all that stuff is first processed by TeX when it reaches "TeX's stomach" --- and only REAL text goes there, not the contents of a special... We've already tryed a lot of things - like for example this: ------------------------------------------------------------- \def\drawfunc[#1,#2]{\Xmin =#1 \Xmax=#2 \begingroup\math\getfunc} \def\getfunc#1{\xdef\func{{{{#1}}}}\endgroup\drawit} \def\drawit{\special{ ... /func \func def ...} ------------------------------------------------------------- but... neither the argument of `\getfunc' nor `\func' are ever expanded to more than a lot of bgroups and egroups.... We'd apreciate your help very much /Kresten and Frank NB: You're welcome to email if you have further questions -- ( . (. ) ) ) ( ( .________. <krab@iesd.auc.dk> | | __| | )) Kresten Krab Thorup | | //| Institute for electronic systems `---`-`------'---' Dept. of mathemathics and computer science Coffee coffee ... (C) 1991 Aalborg University - Denmark, EC