ele9050@cdc835.cdc.polimi.it (Luca Radice) (06/26/91)
This is a program for HP-48SX which would be interesting to solve statistical problem about a lot of distribution equation. Sorry for my poor english, I hope this explanation clear for understand the program. Strip the comment and download above here. ---------------------------------------------------------------------- %%HP: T(3)A(D)F(.); DIR BINO DIR @ Contents: @ Bino: Equation of binomial distribution @ Set value of 'n' and 'p' or use solvr. @ P: Computes the binomial value for a given k value @ using the values of 'n' 'p' stored into the variables. @ \Gm: (mu) Calculate the mean of distribution. @ \Gs2: (Sigma^2) Standard variation. @ G: equation of momentum generator. @ RANGE: Computes the cumulative value between @ a and b. Bino 'n!/(k!*(n-k)!)*p^k*(1-p)^(n-k)' P \<< \-> k 'n!/(k!*(n-k)!)*p^k*(1-p)^(n-k)' \>> \Gm \<< 'n*p' \>> \Gs2 \<< 'n*p*(1-p)' \>> n 15 p .12 G '(1-p+p*e^t)^n' RANGE \<< \-> a b \<< 0 a b FOR T T P + NEXT \>> \>> END POIS DIR @ Contents: @ POIS: Equation of Poisson distribution @ Set value of 'np'. @ P: Computes the equation value for a given k value @ using the value 'np' stored into the variables. @ \Gm: (mu) Calculate the mean of distribution. @ \Gs2: (Sigma^2) Standard variation. @ G: equation of momentum generator. @ RANGE: Computes the cumulative value between @ a and b. POIS '\Gl^k/k!*e^-\Gl' P \<< \-> k '\Gl^k/k!*e^-\Gl' \->NUM \>> \Gm np \Gs2 np np 3.297 \Gl np G 'e^\Gl(e^t-1)' RANGE \<< \-> a b \<< 0 a b FOR T T P + NEXT \>> \>> END GAUS DIR @ Contents: @ GAUS: Equation of Gauss (and Normal) distribution @ Set value of '\Gm'(mean) and '\Gs' (sigma). @ F: Computes the equation value for a given X value @ using the values of mean and sigma stored into the variables. @ P: Computes the area of the upper queue of distribution @ between a and +infinite. @ G: equation of momentum generator. @ P\->X: Computes the X value for a given upper queue area R; @ (reverse the equation: ONLY for Standard NORMAL). @ RANGE: Computes the area of distribution between @ a and b. GAUS '1/(\v/(2*\pi)*\Gs)*e^(-(X-\Gm)^2/(2*\Gs^2))' G 'e^(\Gm*t)*e^(1/2*\Gs^2*t^2)' F \<< 'X' STO GAUS \->NUM \>> P \<< \-> a \<< \Gm \Gs 2 ^ a UTPN \>> \>> \Gm 0 \Gs 1 X 5 P\->X \<< .000001 \-> H R \<< -6 'A' STO 6 'B' STO DO B A - 2 / A + 'M' STO M IF 0 1 M UTPN H \>= THEN 'A' STO ELSE 'B' STO END UNTIL 0 1 A UTPN H - ABS R \<= END \>> A { A B M } PURGE \>> RANGE \<< \-> a b \<< a P b P - \>> \>> END CHI2 DIR @ Contents: @ CHI2: Equation of Chi^2 distribution @ Set value of 'v' (freedom degrees). @ F: Computes the equation value for a given ki2 value @ using the value of 'v' stored into the variable. @ P: Computes the area of the upper queue of distribution @ between a and +infinite. @ G: equation of momentum generator. @ CHI\->X: Computes the X value for a given upper queue area R; @ (reverse the equation). @ \Gs2: (Sigma^2) Standard variation. CHI2 '1/(2^(v/2)*(v/2)!)*e^(-ki2/2)*ki2^(v/2-1)' F \<< 'ki2' STO CHI2 \->NUM \>> P \<< \-> a \<< v a UTPC \>> \>> v 2 \Gs2 \<< '2*v' \->NUM \>> ki2 .920044414629 CHI\->X \<< .0000001 \-> H R \<< 0 'A' STO 200 'B' STO DO B A - 2 / A + 'M' STO M IF v M UTPC H \>= THEN 'A' STO ELSE 'B' STO END UNTIL v A UTPC H - ABS R \<= END \>> A { A B M } PURGE \>> G '1/(1-2*t)^(v/2)' END GAMM DIR @ Contents: @ GAMM: Equation of Gamma distribution @ Set value of '\Gr' and 'k' (freedom degrees). @ F: Computes the equation value for a given X value @ using the values of '\Gr' and 'k' stored into the variables. @ P: Computes the area of distribution @ between a and b. @ \Gm: (mu) Calculate the mean of distribution. @ \Gs2: (Sigma^2) Standard variation. GAMM '1/k!*\Gr^k*X^(k-1)*e^(-\Gr*X)' F \<< 'X' STO GAMM \->NUM \>> P \<< \-> a b \<< a b GAMM 'X' \.S \->NUM 'IERR' PURGE \>> \>> \Gm \<< 'k/\Gr' \->NUM \>> \Gs2 \<< 'k/\Gr^ 2' \->NUM \>> k 1 \Gr 2 X 1 END STUD DIR @ Contents: @ STUD: Equation of Student (t) distribution @ Set value of 'v' (freedom degrees). @ F: Computes the equation value for a given t value @ using the value of 'v' stored into the variable. @ P: Computes the area of the upper queue of distribution @ between a and +infinite. @ \Gm: (mu) Calculate the mean of distribution. @ \Gs2: (Sigma^2) Standard variation. STUD '((v+1)/2)!/(\v/(\pi*v)*(v/2)!)*(1/(1+t^2/v)^((v+1)/2))' F \<< 't' STO STUD \->NUM \>> P \<< \-> a \<< v a UTPT \>> \>> \Gm 0 \Gs2 \<< 'v/(v-2)' \->NUM \>> v 4 t 8 END FISH DIR @ Contents: @ FISH: Equation of Fisher (f) distribution @ Set value of 'v' and '\Gl' (freedom degrees). @ F: Computes the equation value for a given x value @ using the value of 'v' stored into the variable. @ P: Computes the area of the upper queue of distribution @ between a and +infinite. @ \Gm: (mu) Calculate the mean of distribution. @ \Gs2: (Sigma^2) Standard variation. FISH '\Gl^(\Gl/2)*v^(v/2)*((\Gl+v)/2)!/((\Gl/2)!*(v/2)!)* (x^((\Gl-2)/2)/(\Gl*x+v)^((\Gl+v)/2))' F \<< 'x' STO FISH \->NUM \>> P \<< \-> a \<< \Gl v a UTPF \>> \>> \Gm \<< 'v/(v -2)' \->NUM \>> \Gs2 \<< '2*v^2*(\Gl+v-2)/(\Gl*(v-2)^2*(v-4))' \->NUM \>> \Gl 1 v 5 x 4 END ESPON DIR @ Contents: @ ESPON: Equation of Esponential distribution @ Set value of '\Gm' (mean). @ F: Computes the equation value for a given X value @ using the value of '\Gm' stored into the variable. @ P: Computes the area of the upper queue of distribution @ between a and +infinite. @ \Gm: (mu) mean of distribution. ESPON '1/\Gm*e^-(X/\Gm)' F \<< 'X' STO ESPON \->NUM \>> P \<< \-> a \<< a .000000002 \Gm * LN \Gm NEG * a + ESPON 'X' \.S \->NUM \>> \>> \Gm 5 X 2 END END ----------------------------------------------------------------------- Luca Radice Politecnico di Milano Italia. ele9050@cdc835.cdc.polimi.it -- Luca Radice Politecnico di Milano ele9050@cdc835.cdc.polimi.it Centro Di Calcolo