[comp.doc] RFC882 part 2 of 2

brian@sdcsvax.UCSD.EDU (Brian Kantor) (09/19/87)

---
      previous algorithm) by determining that it was not an authority
      for F.ISI.ARPA.  The test would note that it had authority at " ",
      but would also note that the authority was delegated at ARPA and
      never reestablished via another SOA.  Thus the response would
      return the NS record for the domain ARPA.

      Any queries presented to this server with QCLASS=CS would result
      in the UDEL.CSNET NS record being returned in the response.








Mockapetris                                                    [Page 21]


RFC 882                                                    November 1983
                                  Domain Names - Concepts and Facilities


   F.ISI.ARPA Name server for ARPA and ISI.ARPA

      In the same domain space, the F.ISI.ARPA database for the domains
      ARPA and ISI.ARPA might be:

            Domain        Resource Record                   

            " "           NS      IN     B.ISI.ARPA         
            " "           NS      CS     CSNET.UDEL         
            ARPA          SOA     IN     B.ISI.ARPA         
            ARPA          NS      IN     A.ISI.ARPA         
            ARPA          NS      IN     F.ISI.ARPA         
            MIT.ARPA      NS      IN     AI.MIT.ARPA        
            ISI.ARPA      SOA     IN     F.ISI.ARPA         
            ISI.ARPA      NS      IN     F.ISI.ARPA         

            A.ISI.ARPA    MD      IN     A.ISI.ARPA         
            ISI.ARPA      MD      IN     F.ISI.ARPA         
            A.ISI.ARPA    MF      IN     F.ISI.ARPA         
            B.ISI.ARPA    MD      IN     B.ISI.ARPA         
            B.ISI.ARPA    MF      IN     F.ISI.ARPA         
            F.ISI.ARPA    MD      IN     F.ISI.ARPA         
            F.ISI.ARPA    MF      IN     A.ISI.ARPA         
            DTI.ARPA      MD      IN     DTI.ARPA           
            NBS.ARPA      MD      IN     NBS.ARPA           
            UDEL.ARPA     MD      IN     UDEL.ARPA          

            A.ISI.ARPA    A       IN     10.1.0.32          
            F.ISI.ARPA    A       IN     10.2.0.52          
            B.ISI.ARPA    A       IN     10.3.0.52          
            DTI.ARPA      A       IN     10.0.0.12          
            AI.MIT.ARPA   A       IN     10.2.0.6           
            DMS.MIT.ARPA  A       IN     10.1.0.6           
            NBS.ARPA      A       IN     10.0.0.19          
            UDEL.ARPA     A       IN     10.0.0.96          

      For the IN class, the SOA RR for ARPA denotes that this name
      server is authoritative for the domain ARPA, and that the master
      file for this authority is stored on B.ISI.ARPA.  This zone
      extends to ISI.ARPA, where the database delegates authority back
      to this name server in another zone, and doesn't include the
      domain MIT.ARPA, which is served by a name server on AI.MIT.ARPA.

      This name server is not authoritative for any data in the CS
      class.  It has a pointer to the root server for CS data which
      could be use to resolve CS class queries.

      Suppose this name server received a query of the form
      QNAME=A.ISI.ARPA, QTYPE=A, and QCLASS=IN.  The authority search


Mockapetris                                                    [Page 22]


RFC 882                                                    November 1983
                                  Domain Names - Concepts and Facilities


      would notice the NS record for " ", its SOA at ARPA, a delegation
      at ISI.ARPA, and the reassumption of authority at ISI.ARPA.  Hence
      it would know that it was an authority for this query.  It would
      then find the A record for A.ISI.ARPA, and return a datagram
      containing this record.

      Another query might be QNAME=B.ISI.ARPA, QTYPE=MAILA, QCLASS=*.
      In this case the name server would know that it cannot be
      authoritative because of the "*" value of QCLASS, and would look
      for records for domain B.ISI.ARPA that match.  Assuming that the
      name server performs the additional record inclusion mentioned in
      the name server algorithm, the returned datagram would include:

            ISI.ARPA      NS      IN     F.ISI.ARPA         
            " "           NS      CS     UDEL.CSNET         
            B.ISI.ARPA    MD      IN     B.ISI.ARPA         
            B.ISI.ARPA    MF      IN     F.ISI.ARPA         
            B.ISI.ARPA    A       IN     10.3.0.52          
            F.ISI.ARPA    A       IN     10.2.0.52          

      If the query were QNAME=DMS.MIT.ARPA, QTYPE=MAILA, QCLASS=IN, the
      name server would discover that AI.MIT.ARPA was the authoritative
      name server and return the following:

            MIT.ARPA      NS      IN     AI.MIT.ARPA        
            AI.MIT.ARPA   A       IN     10.2.0.6           

      In this case, the requestor is directed to seek information from
      the MIT.ARPA domain name server residing on AI.MIT.ARPA.






















Mockapetris                                                    [Page 23]


RFC 882                                                    November 1983
                                  Domain Names - Concepts and Facilities


   UDEL.ARPA and UDEL.CSNET name server

      In the previous discussion of the sample domain, we stated that
      UDEL.CSNET and UDEL.ARPA might be the same name server.  In this
      example, we assume that this is the case.  As such, the name
      server is an authority for the root for class CS, and an authority
      for the CSNET domain for class IN.

      This name server deals with mail forwarding between the ARPA
      Internet and CSNET systems.  Its RRs illustrate one approach to
      solving this problem.  The name server has the following resource
      records:

            " "           SOA     CS     UDEL.CSNET         
            " "           NS      CS     UDEL.CSNET         
            " "           NS      IN     B.ISI.ARPA         
            CSNET         SOA     IN     UDEL.ARPA          
            CSNET         NS      IN     UDEL.ARPA          
            ARPA          NS      IN     A.ISI.ARPA         

            *.CSNET       MF      IN     UDEL.ARPA          
            UDEL.CSNET    MD      CS     UDEL.CSNET         
            UCI.CSNET     MD      CS     UCI.CSNET          
            UDEL.ARPA     MD      IN     UDEL.ARPA          

            B.ISI.ARPA    A       IN     10.3.0.52          
            UDEL.ARPA     A       IN     10.0.0.96          
            UDEL.CSNET    A       CS     302-555-0000       
            UCI.CSNET     A       CS     714-555-0000       

      Suppose this name server received a query of the form
      QNAME=UCI.CSNET, QTYPE=MAILA, and QCLASS=IN.  The name server
      would discover it was authoritative for the CSNET domain under
      class IN, but would find no explicit mail data for UCI.CSNET.
      However, using the *.CSNET record, it would construct a reply:

            UCI.CSNET     MF      IN     UDEL.ARPA          
            UDEL.ARPA     A       IN     10.0.0.96          

      If this name server received a query of the form QNAME=UCI.CSNET,
      QTYPE=MAILA, and QCLASS=CS, the name server would return:

            UCI.CSNET     MD      CS     UCI.CSNET          
            UCI.CSNET     A       CS     714-555-0000       

      Note that although this scheme allows for forwarding of all mail
      addressed as <anything>.CSNET, it doesn't help with names that
      have more than two components, e.g. A.B.CSNET.  Although this
      problem could be "fixed" by a series of MF entries for *.*.CSNET,


Mockapetris                                                    [Page 24]


RFC 882                                                    November 1983
                                  Domain Names - Concepts and Facilities


      *.*.*.CSNET, etc, a more tasteful solution would be to introduce a
      cleverer pattern matching algorithm in the CSNET name server.

   Summary of requirements for name servers

      The requirements for a name server are as follows:

         1. It must be recognized by its parent.

         2. It must have complete resource information for all domain
            names for which it is the authority.

         3. It must periodically refresh authoritative information from
            a master file or name server which holds the master.

         4. If it caches information it must also handle TTL management
            for that information.

         5. It must answer simple queries.

   Inverse queries

      Name servers may also support inverse queries that map a
      particular resource to a domain name or domain names that have
      that resource.  For example, while a query might map a domain name
      to a host address, the corresponding inverse query might map the
      address back to the domain name.

      Implementation of this service is optional in a name server, but
      all name servers must at least be able to understand an inverse
      query message and return an error response.

      The domain system cannot guarantee the completeness or uniqueness
      of inverse queries because the domain system is organized by
      domain name rather than by host address or any other resource
      type.  In general, a resolver or other program that wishes to
      guarantee that an inverse query will work must use a name server
      that is known to have the appropriate data, or ask all name
      servers in a domain of interest.

      For example, if a resolver wishes to perform an inverse query for
      an arbitrary host on the ARPA Internet, it must consult a set of
      name servers sufficient to know that all IN data was considered.
      In practice, a single inverse query to a name server that has a
      fairly comprehensive database should satisfy the vast majority of
      inverse queries.

      A detailed discussion of inverse queries is contained in [14].



Mockapetris                                                    [Page 25]


RFC 882                                                    November 1983
                                  Domain Names - Concepts and Facilities


   Completion services

      Some existing systems provide the ability to complete partial
      specifications of arguments.  The general principle is that the
      user types the first few characters of the argument and then hits
      an escape character to prompt the system to complete the rest.
      Some completion systems require that the user type enough of the
      argument to be unique; others do not.

      Other systems allow the user to specify one argument and ask the
      system to fill in other arguments.  For example, many mail systems
      allow the user to specify a username without a host for local mail
      delivery.

      The domain system defines name server completion transactions that
      perform the analogous service for the domain system.
      Implementation of this service is optional in a name server, but
      all name servers must at least be able to understand a completion
      request and return an error response.

      When a resolver wishes to request a completion, it sends a name
      server a message that sets QNAME to the partial string, QTYPE to
      the type of resource desired, and QCLASS to the desired class.
      The completion request also includes a RR for the target domain.
      The target domain RR identifies the preferred location of the
      resource.  In completion requests, QNAME must still have a null
      label to terminate the name, but its presence is ignored.  Note
      that a completion request is not a query, but shares some of the
      same field formats.

      For example, a completion request might contain QTYPE=A, QNAME=B,
      QCLASS=IN and a RR for ISI.ARPA.  This request asks for completion
      for a resource whose name begins with "B" and is "close" to
      ISI.ARPA.  This might be a typical shorthand used in the ISI
      community which uses "B" as a way of referring to B.ISI.ARPA.

      The first step in processing a completion request is to look for a
      "whole label" match.  When the name server receives the request
      mentioned above, it looks at all records that are of type A, class
      IN, and whose domain name starts (on the left) with the labels of
      QNAME, in this case, "B".  If multiple records match, the name
      server selects those whose domain names match (from the right) the
      most labels of the preferred domain name.  If there are still
      multiple candidates, the name server selects the records that have
      the shortest (in terms of octets in the name) domain name.  If
      several records remain, then the name server returns them all.

      If no records are found in the previous algorithm, the name server
      assumes that the rightmost label in QNAME is not complete, and


Mockapetris                                                    [Page 26]


RFC 882                                                    November 1983
                                  Domain Names - Concepts and Facilities


      looks for records that match but require addition of characters to
      the rightmost label of QNAME.  For example, the previous search
      would not match BB.ARPA to B, but this search would.  If multiple
      hits are found, the same discarding strategy is followed.

      A detailed discussion of completion can be found in [14].

RESOLVERS

   Introduction

      Resolvers are programs that interface user programs to domain name
      servers.  In the simplest case, a resolver receives a request from
      a user program (e.g. mail programs, TELNET, FTP) in the form of a
      subroutine call, system call etc., and returns the desired
      information in a form compatible with the local host's data
      formats.

      Because a resolver may need to consult several name servers, the
      amount of time that a resolver will take to complete can vary.
      This variance is part of the justification for the split between
      name servers and resolvers; name servers may use datagrams and
      have a response time that is essentially equal to network delay
      plus a short service time, while resolvers may take an essentially
      indeterminate amount of time.

      We expect to see two types of resolvers: simple resolvers that can
      chain through multiple name servers when required, and more
      complicated resolvers that cache resource records for use in
      future queries.

   Simple resolvers

      A simple resolver needs the following capabilities:

      1. It must know how to access a name server, and should know the
         authoritative name server for the host that it services.

      2. It must know the protocol capabilities for its clients so that
         it can set the class fields of the queries it sends to return
         information that is useful to its clients.  If the resolver
         serves a client that has multiple protocol capabilities, it
         should be able to support the preferences of the client.

         The resolver for a multiple protocol client can either collect
         information for all classes using the * class value, or iterate
         on the classes supported by the client.  Note that in either
         case, the resolver must understand the preferences of the host.
         For example, the host that supports both CSNET and ARPA


Mockapetris                                                    [Page 27]


RFC 882                                                    November 1983
                                  Domain Names - Concepts and Facilities


         Internet protocols might prefer mail delivery (MD) to mail
         forwarding (MF), regardless of protocol, or might prefer one
         protocol regardless of whether MD or MF is required.  Care is
         required to prevent loops.

      3. The resolver must be capable of chaining through multiple name
         servers to get to an authoritative name server for any query.
         The resolver should guard against loops in referrals; a simple
         policy is to discard referrals that don't match more of the
         query name than the referring name server, and also to avoid
         querying the same name server twice (This test should be done
         using addresses of name servers instead of domain names to
         avoid problems when a name server has multiple domain names or
         errors are present in aliases).

      4. The resolver must be able to try alternate name servers when a
         name server doesn't respond.

      5. The resolver must be able to communicate different failure
         conditions to its client.  These failure conditions include
         unknown domain name, unknown resource for a know domain name,
         and inability to access any of the authoritative name servers
         for a domain.

      6. If the resolver uses datagrams for queries, it must recover
         from lost and duplicate datagrams.

   Resolvers with cache management

      Caching provides a tool for improving the performance of name
      service, but also is a potential source of incorrect results.  For
      example, a database might cache information that is later changed
      in the authoritative name servers.  While this problem can't be
      eliminated without eliminating caching, it can be reduced to an
      infrequent problem through the use of timeouts.

      When name servers return resource records, each record has an
      associated time-to-live (TTL) field.  This field is expressed in
      seconds, and has 16 bits of significance.

      When a resolver caches a returned resource record it must also
      remember the TTL field.  The resolver must discard the record when
      the equivalent amount of time has passed.  If the resolver shares
      a database with a name server, it must decrement the TTL field of
      imported records periodically rather than simply deleting the
      record.  This strategy is necessary to avoid exporting a resource
      record whose TTL field doesn't reflect the amount of time that the
      resource record has been cached.  Of course, the resolver should



Mockapetris                                                    [Page 28]


RFC 882                                                    November 1983
                                  Domain Names - Concepts and Facilities


      not decrement the TTL fields of records for which the associated
      name server is an authority.

















































Mockapetris                                                    [Page 29]


RFC 882                                                    November 1983
                                  Domain Names - Concepts and Facilities


Appendix 1 - Domain Name Syntax Specification

   The preferred syntax of domain names is given by the following BNF
   rules.  Adherence to this syntax will result in fewer problems with
   many applications that use domain names (e.g., mail, TELNET).  Note
   that some applications described in [14] use domain names containing
   binary information and hence do not follow this syntax.

      <domain> ::=  <subdomain> | " "

      <subdomain> ::=  <label> | <subdomain> "." <label>

      <label> ::= <letter> [ [ <ldh-str> ] <let-dig> ]

      <ldh-str> ::= <let-dig-hyp> | <let-dig-hyp> <ldh-str>

      <let-dig-hyp> ::= <let-dig> | "-"

      <let-dig> ::= <letter> | <digit>

      <letter> ::= any one of the 52 alphabetic characters A through Z
      in upper case and a through z in lower case

      <digit> ::= any one of the ten digits 0 through 9

   Note that while upper and lower case letters are allowed in domain
   names no significance is attached to the case.  That is, two names
   with the same spelling but different case are to be treated as if
   identical.

   The labels must follow the rules for ARPANET host names.  They must
   start with a letter, end with a letter or digit, and have as interior
   characters only letters, digits, and hyphen.  There are also some
   restrictions on the length.  Labels must be 63 characters or less.

   For example, the following strings identify hosts in the ARPA
   Internet:

      F.ISI.ARPA     LINKABIT-DCN5.ARPA     UCL-TAC.ARPA












Mockapetris                                                    [Page 30]


RFC 882                                                    November 1983
                                  Domain Names - Concepts and Facilities


REFERENCES and BIBLIOGRAPHY

   [1]  E. Feinler, K. Harrenstien, Z. Su, and V. White, "DOD Internet
        Host Table Specification", RFC 810, Network Information Center,
        SRI International, March 1982.

   [2]  J. Postel, "Computer Mail Meeting Notes", RFC 805,
        USC/Information Sciences Institute, February 1982.

   [3]  Z. Su, and J. Postel, "The Domain Naming Convention for Internet
        User Applications", RFC 819, Network Information Center, SRI
        International, August 1982.

   [4]  Z. Su, "A Distributed System for Internet Name Service",
        RFC 830, Network Information Center, SRI International,
        October 1982.

   [5]  K. Harrenstien, and V. White, "NICNAME/WHOIS", RFC 812, Network
        Information Center, SRI International, March 1982.

   [6]  M. Solomon, L. Landweber, and D. Neuhengen, "The CSNET Name
        Server", Computer Networks, vol 6, nr 3, July 1982.

   [7]  K. Harrenstien, "NAME/FINGER", RFC 742, Network Information
        Center, SRI International, December 1977.

   [8]  J. Postel, "Internet Name Server", IEN 116, USC/Information
        Sciences Institute, August 1979.

   [9]  K. Harrenstien, V. White, and E. Feinler, "Hostnames Server",
        RFC 811, Network Information Center, SRI International,
        March 1982.

   [10] J. Postel, "Transmission Control Protocol", RFC 793,
        USC/Information Sciences Institute, September 1981.

   [11] J. Postel, "User Datagram Protocol", RFC 768, USC/Information
        Sciences Institute, August 1980.

   [12] J. Postel, "Simple Mail Transfer Protocol", RFC 821,
        USC/Information Sciences Institute, August 1980.

   [13] J. Reynolds, and J. Postel, "Assigned Numbers", RFC 870,
        USC/Information Sciences Institute, October 1983.

   [14] P. Mockapetris, "Domain Names - Implementation and
        Specification", RFC 883, USC/Information Sciences Institute,
        November 1983.



Mockapetris                                                    [Page 31]