brian@ucsd.EDU (Brian Kantor) (05/03/88)
Network Working Group J. Linn (BBNCC) Request for Comments: 1040 IAB Privacy Task Force Obsoletes RFCs: 989 January 1988 Privacy Enhancement for Internet Electronic Mail: Part I: Message Encipherment and Authentication Procedures STATUS OF THIS MEMO This RFC suggests a proposed protocol for the Internet community, and requests discussion and suggestions for improvements. Distribution of this memo is unlimited. ACKNOWLEDGMENT This RFC is the outgrowth of a series of IAB Privacy Task Force meetings and of internal working papers distributed for those meetings. I would like to thank the following Privacy Task Force members and meeting guests for their comments and contributions at the meetings which led to the preparation of this RFC: David Balenson, Curt Barker, Matt Bishop, Danny Cohen, Tom Daniel, Charles Fox, Morrie Gasser, Steve Kent (chairman), John Laws, Steve Lipner, Dan Nessett, Mike Padlipsky, Rob Shirey, Miles Smid, Steve Walker, and Steve Wilbur. 1. Executive Summary This RFC defines message encipherment and authentication procedures, as the initial phase of an effort to provide privacy enhancement services for electronic mail transfer in the Internet. Detailed key management mechanisms to support these procedures will be defined in a subsequent RFC. As a goal of this initial phase, it is intended that the procedures defined here be compatible with a wide range of key management approaches, including both conventional (symmetric) and public-key (asymmetric) approaches for encryption of data encrypting keys. Use of conventional cryptography for message text encryption and/or integrity check computation is anticipated. Privacy enhancement services (confidentiality, authentication, and message integrity assurance) are offered through the use of end-to-end cryptography between originator and recipient User Agent processes, with no special processing requirements imposed on the Message Transfer System at endpoints or at intermediate relay sites. This approach allows privacy enhancement facilities to be incorporated on a site-by-site or user-by-user basis without impact on other Internet entities. Interoperability among heterogeneous Linn [Page 1] RFC 1040 Privacy Enhancement for Electronic Mail January 1988 components and mail transport facilities is supported. 2. Terminology For descriptive purposes, this RFC uses some terms defined in the OSI X.400 Message Handling System Model per the 1984 CCITT Recommendations. This section replicates a portion of X.400's Section 2.2.1, "Description of the MHS Model: Overview" in order to make the terminology clear to readers who may not be familiar with the OSI MHS Model. In the [MHS] model, a user is a person or a computer application. A user is referred to as either an originator (when sending a message) or a recipient (when receiving one). MH Service elements define the set of message types and the capabilities that enable an originator to transfer messages of those types to one or more recipients. An originator prepares messages with the assistance of his User Agent. A User Agent (UA) is an application process that interacts with the Message Transfer System (MTS) to submit messages. The MTS delivers to one or more recipient UAs the messages submitted to it. Functions performed solely by the UA and not standardized as part of the MH Service elements are called local UA functions. The MTS is composed of a number of Message Transfer Agents (MTAs). Operating together, the MTAs relay messages and deliver them to the intended recipient UAs, which then make the messages available to the intended recipients. The collection of UAs and MTAs is called the Message Handling System (MHS). The MHS and all of its users are collectively referred to as the Message Handling Environment. 3. Services, Constraints, and Implications This RFC defines mechanisms to enhance privacy for electronic mail transferred in the Internet. The facilities discussed in this RFC provide privacy enhancement services on an end-to-end basis between sender and recipient UAs. No privacy enhancements are offered for message fields which are added or transformed by intermediate relay points. Authentication and integrity facilities are always applied to the entirety of a message's text. No facility for confidentiality service without authentication is provided. Encryption facilities may be applied selectively to portions of a message's contents; this allows less sensitive portions of messages (e.g., descriptive fields) to be processed by a recipient's delegate in the absence of the Linn [Page 2] RFC 1040 Privacy Enhancement for Electronic Mail January 1988 recipient's personal cryptographic keys. In the limiting case, where the entirety of message text is excluded from encryption, this feature can be used to yield the effective combination of authentication and integrity services without confidentiality. In keeping with the Internet's heterogeneous constituencies and usage modes, the measures defined here are applicable to a broad range of Internet hosts and usage paradigms. In particular, it is worth noting the following attributes: 1. The mechanisms defined in this RFC are not restricted to a particular host or operating system, but rather allow interoperability among a broad range of systems. All privacy enhancements are implemented at the application layer, and are not dependent on any privacy features at lower protocol layers. 2. The defined mechanisms are compatible with non-enhanced Internet components. Privacy enhancements are implemented in an end-to-end fashion which does not impact mail processing by intermediate relay hosts which do not incorporate privacy enhancement facilities. It is necessary, however, for a message's sender to be cognizant of whether a message's intended recipient implements privacy enhancements, in order that encoding and possible encipherment will not be performed on a message whose destination is not equipped to perform corresponding inverse transformations. 3. The defined mechanisms are compatible with a range of mail transport facilities (MTAs). Within the Internet, electronic mail transport is effected by a variety of SMTP implementations. Certain sites, accessible via SMTP, forward mail into other mail processing environments (e.g., USENET, CSNET, BITNET). The privacy enhancements must be able to operate across the SMTP realm; it is desirable that they also be compatible with protection of electronic mail sent between the SMTP environment and other connected environments. 4. The defined mechanisms offer compatibility with a broad range of electronic mail user agents (UAs). A large variety of electronic mail user agent programs, with a corresponding broad range of user interface paradigms, is used in the Internet. In order that an electronic mail privacy enhancement be available to the broadest possible user community, the selected mechanism should be usable with the widest possible variety of existing UA programs. For Linn [Page 3] RFC 1040 Privacy Enhancement for Electronic Mail January 1988 purposes of pilot implementation, it is desirable that privacy enhancement processing be incorporable into a separate program, applicable to a range of UAs, rather than requiring internal modifications to each UA with which enhanced privacy services are to be provided. 5. The defined mechanisms allow electronic mail privacy enhancement processing to be performed on personal computers (PCs) separate from the systems on which UA functions are implemented. Given the expanding use of PCs and the limited degree of trust which can be placed in UA implementations on many multi-user systems, this attribute can allow many users to process privacy-enhanced mail with a higher assurance level than a strictly UA-based approach would allow. 6. The defined mechanisms support privacy protection of electronic mail addressed to mailing lists. In order to achieve applicability to the broadest possible range of Internet hosts and mail systems, and to facilitate pilot implementation and testing without the need for prior modifications throughout the Internet, three basic restrictions are imposed on the set of measures to be considered in this RFC: 1. Measures will be restricted to implementation at endpoints and will be amenable to integration at the user agent (UA) level or above, rather than necessitating integration into the message transport system (e.g., SMTP servers). 2. The set of supported measures enhances rather than restricts user capabilities. Trusted implementations, incorporating integrity features protecting software from subversion by local users, cannot be assumed in general. In the absence of such features, it appears more feasible to provide facilities which enhance user services (e.g., by protecting and authenticating inter-user traffic) than to enforce restrictions (e.g., inter-user access control) on user actions. 3. The set of supported measures focuses on a set of functional capabilities selected to provide significant and tangible benefits to a broad user community. By concentrating on the most critical set of services, we aim to maximize the added privacy value that can be provided with a modest level of implementation effort. Linn [Page 4] RFC 1040 Privacy Enhancement for Electronic Mail January 1988 As a result of these restrictions, the following facilities can be provided: 1. disclosure protection, 2. sender authenticity, and 3. message integrity measures, but the following privacy-relevant concerns are not addressed: 1. access control, 2. traffic flow confidentiality, 3. address list accuracy, 4. routing control, 5. issues relating to the serial reuse of PCs by multiple users, 6. assurance of message receipt and non-deniability of receipt, 7. automatic association of acknowledgments with the messages to which they refer, and 8. message duplicate detection, replay prevention, or other stream-oriented services. An important goal is that privacy enhancement mechanisms impose a minimum of burden on the users they serve. In particular, this goal suggests eventual automation of the key management mechanisms supporting message encryption and authentication. In order to facilitate deployment and testing of pilot privacy enhancement implementations in the near term, however, compatibility with out-of-band (e.g., manual) key distribution must also be supported. A message's sender will determine whether privacy enhancements are to be performed on a particular message. Therefore, a sender must be able to determine whether particular recipients are equipped to process privacy-enhanced mail. In a general architecture, these mechanisms will be based on server queries; thus, the query function could be integrated into a UA to avoid imposing burdens or inconvenience on electronic mail users. Linn [Page 5] RFC 1040 Privacy Enhancement for Electronic Mail January 1988 4. Processing of Messages 4.1 Message Processing Overview This subsection provides a high-level overview of the components and processing steps involved in electronic mail privacy enhancement processing. Subsequent subsections will define the procedures in more detail. A two-level keying hierarchy is used to support privacy-enhanced message transmission: 1. Data Encrypting Keys (DEKs) are used for encryption of message text and (with certain choices among a set of alternative algorithms) for computation of message integrity check quantities (MICs). DEKs are generated individually for each transmitted message; no predistribution of DEKs is needed to support privacy-enhanced message transmission. 2. Interchange Keys (IKs) are used to encrypt DEKs for transmission within messages. An IK may be a single symmetric cryptographic key or, where asymmetric (public-key) cryptography is used to encrypt DEKs, the composition of a public component used by an originator and a secret component used by a recipient. Ordinarily, the same IK will be used for all messages sent between a given originator-recipient pair over a period of time. Each transmitted message includes a representation of the DEK(s) used for message encryption and/or authentication, encrypted under an individual IK per named recipient. This representation is associated with sender and recipient identification header fields, which enable recipients to identify the IKs used. With this information, the recipient can decrypt the transmitted DEK representation, yielding the DEK required for message text decryption and/or MIC verification. When privacy enhancement processing is to be performed on an outgoing message, a DEK is generated [1] for use in message encryption and a variant of the DEK is formed (if the chosen MIC algorithm requires a key) for use in MIC computation. An "X-Sender-ID:" field is included in the header to provide one identification component for the IK(s) used for message processing. An IK is selected for each individually identified recipient; a corresponding "X-Recipient-ID:" field, interpreted in the context of a prior "X-Sender-ID:" field, serves to identify each IK. Each "X-Recipient-ID:" field is followed by an "X-Key-Info:" field, which transfers the DEK and computed MIC. The DEK and MIC are encrypted for transmission under the appropriate IK. Linn [Page 6] RFC 1040 Privacy Enhancement for Electronic Mail January 1988 A four-phase transformation procedure is employed in order to represent encrypted message text in a universally transmissible form and to enable messages encrypted on one type of system to be decrypted on a different type. A plaintext message is accepted in local form, using the host's native character set and line representation. The local form is converted to a canonical message text representation, defined as equivalent to the inter-SMTP representation of message text. This canonical representation forms the input to the encryption and MIC computation processes. For encryption purposes, the canonical representation is padded as required by the encryption algorithm. The padded canonical representation is encrypted (except for any regions explicitly excluded from encryption). The canonically encoded representation is encoded, after encryption, into a printable form. The printable form is composed of a restricted character set which is chosen to be universally representable across sites, and which will not be disrupted by processing within and between MTS entities. The output of the encoding procedure is combined with a set of header fields carrying cryptographic control information. The result is passed to the electronic mail system to be encapsulated as the text portion of a transmitted message. When a privacy-enhanced message is received, the cryptographic control fields within its text portion provide the information required for the authorized recipient to perform MIC verification and decryption of the received message text. First, the printable encoding is converted to a bitstring. The MIC is verified. Encrypted portions of the transmitted message are decrypted, and the canonical representation is converted to the recipient's local form, which need not be the same as the sender's local form. 4.2 Encryption Algorithms and Modes For purposes of this RFC, the Block Cipher Algorithm DEA-1, defined in ISO draft international standard DIS 8227 [2] shall be used for encryption of message text. The DEA-1 is equivalent to the Data Encryption Standard (DES), as defined in FIPS PUB 46 [3]. When used for encryption of text, the DEA-1 shall be used in the Cipher Block Chaining (CBC) mode, as defined in ISO DIS 8372 [4]. The CBC mode definition in DIS 8372 is equivalent to that provided in FIPS PUB 81 [5]. A unique initializing vector (IV) will be generated for and transmitted with each privacy-enhanced electronic mail message. Linn [Page 7] RFC 1040 Privacy Enhancement for Electronic Mail January 1988 An algorithm other than DEA-1 may be employed, provided that it satisfies the following requirements: 1. It must be a 64-bit block cipher, enciphering and deciphering in 8-octet blocks. 2. It is usable in the ECB and CBC modes defined in DIS 8372. 3. It is able to be keyed using the procedures and parameters defined in this RFC. 4. It is appropriate for MIC computation, if the selected MIC computation algorithm is eCcryption-based. 5. Cryptographic key field lengths are limited to 16 octets in length. Certain operations require that one key be encrypted under another key (interchange key) for purposes of transmission. This encryption may be performed using symmetric cryptography by using DEA-1 in Electronic Codebook (ECB) mode. A header facility is available to indicate that an associated key is to be used for encryption in another mode (e.g., the Encrypt-Decrypt-Encrypt (EDE) mode used for key encryption and decryption with pairs of 64-bit keys, as described by ASC X3T1 [6], or public-key algorithms). Support of public key algorithms for key encryption is under active consideration, and it is intended that the procedures defined in this RFC be appropriate to allow such usage. Support of key encryption modes other than ECB is optional for implementations, however. Therefore, in support of universal interoperability, interchange key providers should not specify other modes in the absence of a priori information indicating that recipients are equipped to perform key encryption in other modes. 4.3 Privacy Enhancement Message Transformations 4.3.1 Constraints An electronic mail encryption mechanism must be compatible with the transparency constraints of its underlying electronic mail facilities. These constraints are generally established based on expected user requirements and on the characteristics of anticipated endpoint transport facilities. An encryption mechanism must also be compatible with the local conventions of the computer systems which it interconnects. In our approach, a canonicalization step is performed to abstract out local conventions and a subsequent encoding Linn [Page 8] RFC 1040 Privacy Enhancement for Electronic Mail January 1988 step is performed to conform to the characteristics of the underlying mail transport medium (SMTP). The encoding conforms to SMTP constraints, established to support interpersonal messaging. SMTP's rules are also used independently in the canonicalization process. RFC-821's [7] Section 4.5 details SMTP's transparency constraints. To encode a message for SMTP transmission, the following requirements must be met: 1. All characters must be members of the 7-bit ASCII character set. 2. Text lines, delimited by the character pair <CR><LF>, must be no more than 1000 characters long. 3. Since the string <CR><LF>.<CR><LF> indicates the end of a message, it must not occur in text prior to the end of a message. Although SMTP specifies a standard representation for line delimiters (ASCII <CR><LF>), numerous systems use a different native representation to delimit lines. For example, the <CR><LF> sequences delimiting lines in mail inbound to UNIX(tm) systems are transformed to single <LF>s as mail is written into local mailbox files. Lines in mail incoming to record-oriented systems (such as VAX VMS) may be converted to appropriate records by the destination SMTP [8] server. As a result, if the encryption process generated <CR>s or <LF>s, those characters might not be accessible to a recipient UA program at a destination which uses different line delimiting conventions. It is also possible that conversion between tabs and spaces may be performed in the course of mapping between inter-SMTP and local format; this is a matter of local option. If such transformations changed the form of transmitted ciphertext, decryption would fail to regenerate the transmitted plaintext, and a transmitted MIC would fail to compare with that computed at the destination. The conversion performed by an SMTP server at a system with EBCDIC as a native character set has even more severe impact, since the conversion from EBCDIC into ASCII is an information-losing transformation. In principle, the transformation function mapping between inter-SMTP canonical ASCII message representation and local format could be moved from the SMTP server up to the UA, given a means to direct that the SMTP server should no longer perform that transformation. This approach has a major disadvantage: internal file (e.g., mailbox) formats would be incompatible with the native forms used on the systems where they reside. Further, it would require modification to SMTP servers, as mail would be passed to SMTP in a different representation than it is passed at present. Linn [Page 9] RFC 1040 Privacy Enhancement for Electronic Mail January 1988 4.3.2 Approach Our approach to supporting privacy-enhanced mail across an environment in which intermediate conversions may occur encodes mail in a fashion which is uniformly representable across the set of privacy-enhanced UAs regardless of their systems' native character sets. This encoded form is used to represent mail text from sender to recipient, but the encoding is not applied to enclosing mail transport headers or to encapsulated headers inserted to carry control information between privacy-enhanced UAs. The encoding's characteristics are such that the transformations anticipated between sender and recipient UAs will not prevent an encoded message from being decoded properly at its destination. A sender may exclude one or more portions of a message from encryption processing. Authentication processing is always applied to the entirety of message text. Explicit action is required to exclude a portion of a message from encryption processing; by default, encryption is applied to the entirety of message text. The user-level delimiter which specifies such exclusion is a local matter, and hence may vary between sender and recipient, but all systems should provide a means for unambiguous identification of areas excluded from encryption processing. An outbound privacy-enhanced message undergoes four transformation steps, described in the following four subsections. 4.3.2.1 Step 1: Local Form The message text is created in the system's native character set, with lines delimited in accordance with local convention. 4.3.2.2 Step 2: Canonical Form The entire message text, including both those portions subject to encipherment processing and those portions excluded from such processing, is converted to the universal canonical form, equivalent to the inter-SMTP representation [9] as defined in RFC-821 and RFC-822 [10] (ASCII character set, <CR><LF> line delimiters). The processing required to perform this conversion is minimal on systems whose native character set is ASCII. Since a message is converted to a standard character set and representation before encryption, it can be decrypted and its MIC can be verified at any destination system before any conversion necessary to transform the message into a destination-specific local form is performed. Linn [Page 10] RFC 1040 Privacy Enhancement for Electronic Mail January 1988 4.3.2.3 Step 3: Authentication and Encipherment The canonical form is input to the selected MIC computation algorithm in order to compute an integrity check quantity for the message. No padding is added to the canonical form before submission to the MIC computation algorithm, although certain MIC algorithms will apply their own padding in the course of computing a MIC. Padding is applied to the canonical form as needed to perform encryption in the DEA-1 CBC mode, as follows: The number of octets to be encrypted is determined by subtracting the number of octets excluded from encryption from the total length of the encapsulated text. Octets with the hexadecimal value FF (all ones) are appended to the canonical form as needed so that the text octets to be encrypted, along with the added padding octets, fill an integral number of 8-octet encryption quanta. No padding is applied if the number of octets to be encrypted is already an integral multiple of 8. The use of hexadecimal FF (a value outside the 7-bit ASCII set) as a padding value allows padding octets to be distinguished from valid data without inclusion of an explicit padding count indicator. The regions of the message which have not been excluded from encryption are encrypted. To support selective encipherment processing, an implementation must retain internal indications of the positions of excluded areas excluded from encryption with relation to non-excluded areas, so that those areas can be properly delimited in the encoding procedure defined in step 4. If a region excluded from encryption intervenes between encrypted regions, cryptographic state (e.g., IVs and accumulation of octets into encryption quanta) is preserved and continued after the excluded region. 4.3.2.4 Step 4: Printable Encoding The bit string resulting from step 3 is encoded into characters which are universally representable at all sites, though not necessarily with the same bit patterns (e.g., although the character "E" is represented in an ASCII-based system as hexadecimal 45 and as hexadecimal C5 in an EBCDIC-based system, the local significance of the two representations is equivalent). This encoding step is performed for all privacy-enhanced messages. A 64-character subset of International Alphabet IA5 is used, enabling 6-bits to be represented per printable character. (The proposed subset of characters is represented identically in IA5 and ASCII.) Two additional characters, "=" and "*", are used to signify special processing functions. The character "=" is used for padding within the printable encoding procedure. The character "*" is used to delimit the beginning and end of a region which has been excluded Linn [Page 11] RFC 1040 Privacy Enhancement for Electronic Mail January 1988 from encipherment processing. The encoding function's output is delimited into text lines (using local conventions), with each line containing 64 printable characters. The encoding process represents 24-bit groups of input bits as output strings of 4 encoded characters. Proceeding from left to right across a 24-bit input group extracted from the output of step 3, each 6-bit group is used as an index into an array of 64 printable characters. The character referenced by the index is placed in the output string. These characters, identified in Table 1, are selected so as to be universally representable, and the set excludes characters with particular significance to SMTP (e.g., ".", "<CR>", "<LF>"). Special processing is performed if fewer than 24-bits are available in an input group, either at the end of a message or (when the selective encryption facility is invoked) at the end of an encrypted region or an excluded region. In other words, a full encoding quantum is always completed at the end of a message and before the delimiter "*" is output to initiate or terminate the representation of a block excluded from encryption. When fewer than 24 input bits are available in an input group, zero bits are added (on the right) to form an integral number of 6-bit groups. Output character positions which are not required to represent actual input data are set to the character "=". Since all canonically encoded output is an integral number of octets, only the following cases can arise: (1) the final quantum of encoding input is an integral multiple of 24-bits; here, the final unit of encoded output will be an integral multiple of 4 characters with no "=" padding, (2) the final quantum of encoding input is exactly 8-bits; here, the final unit of encoded output will be two characters followed by two "=" padding characters, or (3) the final quantum of encoding input is exactly 16-bits; here, the final unit of encoded output will be three characters followed by one "=" padding character. In summary, the outbound message is subjected to the following composition of transformations: Transmit_Form = Encode(Encipher(Canonicalize(Local_Form))) The inverse transformations are performed, in reverse order, to process inbound privacy-enhanced mail: Local_Form = DeCanonicalize(Decipher(Decode(Transmit_Form))) Note that the local form and the functions to transform messages to and from canonical form may vary between the sender and recipient systems without loss of information. Linn [Page 12] RFC 1040 Privacy Enhancement for Electronic Mail January 1988 Value Encoding Value Encoding Value Encoding Value Encoding 0 A 17 R 34 i 51 z 1 B 18 S 35 j 52 0 2 C 19 T 36 k 53 1 3 D 20 U 37 l 54 2 4 E 21 V 38 m 55 3 5 F 22 W 39 n 56 4 6 G 23 X 40 o 57 5 7 H 24 Y 41 p 58 6 8 I 25 Z 42 q 59 7 9 J 26 a 43 r 60 8 10 K 27 b 44 s 61 9 11 L 28 c 45 t 62 + 12 M 29 d 46 u 63 / 13 N 30 e 47 v 14 O 31 f 48 w (pad) = 15 P 32 g 49 x 16 Q 33 h 50 y (1) * (1) The character "*" is used to delimit portions of an encoded message to which encryption processing has not been applied. Printable Encoding Characters Table 1 4.4 Encapsulation Mechanism Encapsulation of privacy-enhanced messages within an enclosing layer of headers interpreted by the electronic mail transport system offers a number of advantages in comparison to a flat approach in which certain fields within a single header are encrypted and/or carry cryptographic control information. Encapsulation provides generality and segregates fields with user-to-user significance from those transformed in transit. All fields inserted in the course of encryption/authentication processing are placed in the encapsulated header. This facilitates compatibility with mail handling programs which accept only text, not header fields, from input files or from other programs. Further, privacy enhancement processing can be applied recursively. As far as the MTS is concerned, information incorporated into cryptographic authentication or encryption processing will reside in a message's text portion, not its header portion. Linn [Page 13] RFC 1040 Privacy Enhancement for Electronic Mail January 1988 The encapsulation mechanism to be used for privacy-enhanced mail is derived from that described in RFC-934 [11] which is, in turn, based on precedents in the processing of message digests in the Internet community. To prepare a user message for encrypted or authenticated transmission, it will be transformed into the representation shown in Figure 1. Enclosing Header Portion (Contains header fields per RFC-822) Blank Line (Separates Enclosing Header from Encapsulated Message) Encapsulated Message Pre-Encapsulation Boundary (Pre-EB) -----PRIVACY-ENHANCED MESSAGE BOUNDARY----- Encapsulated Header Portion (Contains encryption control fields inserted in plaintext. Examples include "X-IV:", "X-Sender-ID:", and "X-Key-Info:". Note that, although these control fields have line-oriented representations similar to RFC-822 header fields, the set of fields valid in this context is disjoint from those used in RFC-822 processing.) Blank Line (Separates Encapsulated Header from subsequent encoded Encapsulated Text Portion) Encapsulated Text Portion (Contains message data encoded as specified in Section 4.3; may incorporate protected copies of "Subject:", etc.) Post-Encapsulation Boundary (Post-EB) -----PRIVACY-ENHANCED MESSAGE BOUNDARY----- Message Encapsulation Figure 1 As a general design principle, sensitive data is protected by incorporating the data within the encapsulated text rather than by applying measures selectively to fields in the enclosing header. Examples of potentially sensitive header information may include fields such as "Subject:", with contents which are significant on an end-to-end, inter-user basis. The (possibly empty) set of headers to which protection is to be applied is a user option. It is strongly recommended, however, that all implementations should replicate Linn [Page 14] RFC 1040 Privacy Enhancement for Electronic Mail January 1988 copies of "X-Sender-ID:" and "X-Recipient-ID:" fields within the encapsulated text and include those replicated fields in encryption and MIC computations. If a user wishes disclosure protection for header fields, they must occur only in the encapsulated text and not in the enclosing or encapsulated header. If disclosure protection is desired for a message's subject indication, it is recommended that the enclosing header contain a "Subject:" field indicating that "Encrypted Mail Follows". If an authenticated version of header information is desired, that data can be replicated within the encapsulated text portion in addition to its inclusion in the enclosing header. For example, a sender wishing to provide recipients with a protected indication of a message's position in a series of messages could include a copy of a timestamp or message counter field within the encapsulated text. A specific point regarding the integration of privacy-enhanced mail facilities with the message encapsulation mechanism is worthy of note. The subset of IA5 selected for transmission encoding intentionally excludes the character "-", so encapsulated text can be distinguished unambiguously from a message's closing encapsulation boundary (Post-EB) without recourse to character stuffing. 4.5 Mail for Mailing Lists When mail is addressed to mailing lists, two different methods of processing can be applicable: the IK-per-list method and the IK- perrecipient method. The choice depends on the information available to the sender and on the sender's preference. If a message's sender addresses a message to a list name or alias, use of an IK associated with that name or alias as a entity (IK- perlist), rather than resolution of the name or alias to its constituent destinations, is implied. Such an IK must, therefore, be available to all list members. For the case of public-key cryptography, the secret component of the composite IK must be available to all list members. This alternative will be the normal case for messages sent via remote exploder sites, as a sender to such lists may not be cognizant of the set of individual recipients. Unfortunately, it implies an undesirable level of exposure for the shared IK or component, and makes its revocation difficult. Moreover, use of the IK-per-list method allows any holder of the list's IK to masquerade as another sender to the list for authentication purposes. Linn [Page 15] RFC 1040 Privacy Enhancement for Electronic Mail January 1988 If, in contrast, a message's sender is equipped to expand the destination mailing list into its individual constituents and elects to do so (IK-per-recipient), the message's DEK and MIC will be encrypted under each per-recipient IK and all such encrypted representations will be incorporated into the transmitted message. Note that per-recipient encryption is required only for the relatively small DEK and MIC quantities carried in the X-Key-Info field, not for the message text which is, in general, much larger. Although more IKs are involved in processing under the IK- perrecipient method, the pairwise IKs can be individually revoked and possession of one IK does not enable a successful masquerade of another user on the list. 4.6 Summary of Added Header and Control Fields This section summarizes the syntax and semantics of the new encapsulated header fields to be added to messages in the course of privacy enhancement processing. In certain indicated cases, it is recommended that the fields be replicated within the encapsulated text portion as well. Figure 2 shows the appearance of a small example encapsulated message using these fields. The example assumes the use of symmetric cryptography; no "X-Certificate:" field is carried. In all cases, hexadecimal quantities are represented as contiguous strings of digits, where each digit is represented by a character from the ranges "0"-"9" or upper case "A"-"F". Unless otherwise specified, all arguments are to be processed in a casesensitive fashion. Although the encapsulated header fields resemble RFC-822 header fields, they are a disjoint set and will not in general be processed by the same parser which operates on enclosing header fields. The complexity of lexical analysis needed and appropriate for encapsulated header field processing is significantly less than that appropriate to RFC-822 header processing. For example, many characters with special significance to RFC-822 at the syntactic level have no such significance within encapsulated header fields. When the length of an encapsulated header field is longer than the size conveniently printable on a line, whitespace may be used between the subfields of these fields to fold them in the manner of RFC-822, section 3.1.1. Any such inserted whitespace is not to be interpreted as a part of a subfield. Linn [Page 16]