[alt.sources] nlmdl Part 3 of 6

arg@ccvr1.ncsu.edu (Ron Gallant) (12/23/90)

#! /bin/sh
# This is a shell archive.  Remove anything before this line, then unpack
# it by saving it into a file and typing "sh file".  To overwrite existing
# files, type "sh file -c".  You can also feed this as standard input via
# unshar, or by typing "sh <file", e.g..  If this archive is complete, you
# will see the following message at the end:
#		"End of archive 3 (of 6)."
# Contents:  ch1eg1/detail.bak ch6eg2/hansen.dat nlopr.cc realmat.cc
# Wrapped by arg@sparc on Sat Dec 22 15:25:09 1990
PATH=/bin:/usr/bin:/usr/ucb ; export PATH
if test -f 'ch1eg1/detail.bak' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'ch1eg1/detail.bak'\"
else
echo shar: Extracting \"'ch1eg1/detail.bak'\" \(11585 characters\)
sed "s/^X//" >'ch1eg1/detail.bak' <<'END_OF_FILE'
X
X
X     **********************************************************************
X     *                                                                    *
X     *                                data                                *
X     *                                                                    *
X     **********************************************************************
X 
X 
X                   Col  1      Col  2      Col  3      Col  4      Col  5
X 
X       Row  1     1.00000    0.986100     1.00000     1.00000     6.28000
X       Row  2     2.00000     1.03848         0.0     1.00000     9.86000
X       Row  3     3.00000    0.954820     1.00000     1.00000     9.11000
X       Row  4     4.00000     1.04184         0.0     1.00000     8.43000
X       Row  5     5.00000     1.02324     1.00000     1.00000     8.11000
X       Row  6     6.00000    0.904750         0.0     1.00000     1.82000
X       Row  7     7.00000    0.962630     1.00000     1.00000     6.58000
X       Row  8     8.00000     1.05026         0.0     1.00000     5.02000
X       Row  9     9.00000    0.988610     1.00000     1.00000     6.52000
X       Row 10     10.0000     1.03437         0.0     1.00000     3.75000
X       Row 11     11.0000    0.989820     1.00000     1.00000     9.86000
X       Row 12     12.0000     1.01214         0.0     1.00000     7.31000
X       Row 13     13.0000    0.667680     1.00000     1.00000    0.470000
X       Row 14     14.0000    0.551070         0.0     1.00000   0.0700000
X       Row 15     15.0000    0.968220     1.00000     1.00000     4.07000
X       Row 16     16.0000    0.988230         0.0     1.00000     4.61000
X       Row 17     17.0000    0.597590     1.00000     1.00000    0.170000
X       Row 18     18.0000    0.994180         0.0     1.00000     6.99000
X       Row 19     19.0000     1.01962     1.00000     1.00000     4.39000
X       Row 20     20.0000    0.691630         0.0     1.00000    0.390000
X       Row 21     21.0000     1.04255     1.00000     1.00000     4.73000
X       Row 22     22.0000     1.04343         0.0     1.00000     9.42000
X       Row 23     23.0000    0.975260     1.00000     1.00000     8.90000
X       Row 24     24.0000     1.04969         0.0     1.00000     3.02000
X       Row 25     25.0000    0.802190     1.00000     1.00000    0.770000
X       Row 26     26.0000     1.01046         0.0     1.00000     3.31000
X       Row 27     27.0000    0.951960     1.00000     1.00000     4.51000
X       Row 28     28.0000    0.976580         0.0     1.00000     2.65000
X       Row 29     29.0000    0.508110     1.00000     1.00000   0.0800000
X       Row 30     30.0000    0.918400         0.0     1.00000     6.11000
X
X
X     **********************************************************************
X     *                                                                    *
X     *                         Parameter settings                         *
X     *                                                                    *
X     **********************************************************************
X
X     Gallant, "Nonlinear Statistical Models," Chapter 1, Figure 5, p. 35-36.
X     SUR                What estimation method?  Code SUR, TSLS, or GMM.
X     30                 Number of observations, t = 1, ..., n.
X     1                  Number of equations, i.e. dimension of e.
X     0                  Number of instruments, i.e. dimension of Z.
X     4                  Number of parameters, i.e. dimension of theta.
X     50                 Upper limit on Gauss-Newton iterations.
X     1                  Number var iterates, ivar=0 means none.
X     homoskedastic      Code homoskedastic or heteroskedastic.
X     0                  Number of moving average terms MA for var estimate.
X     none               Code none or Parzen, none when MA>0 is unwise.
X     1.000000e-13       Convergence tolerance, tol=1.0e-8 is reasonable.
X     1.000000e-10       Inversion tolerance, eps=1.0e-13 is reasonable
X     full               How much output?  Code none, minimal, or full.
X
X
X     **********************************************************************
X     *                                                                    *
X     *                           Starting theta                           *
X     *                                                                    *
X     **********************************************************************
X 
X 
X                                           Col  1
X 
X                               Row  1  -0.0486600
X                               Row  2     1.03884
X                               Row  3   -0.737920
X                               Row  4   -0.513620
X
Xvar_loop 0
X   1.0000000000000000e+00           1.00000000  var(1,1)
X
Xtheta_loop 0
X  -4.8660000000000002e-02          -0.04866000  theta(1)
X   1.0388400000000000e+00           1.03884000  theta(2)
X  -7.3792000000000002e-01          -0.73792000  theta(3)
X  -5.1361999999999997e-01          -0.51362000  theta(4)
X   5.0775308202588146e-02           0.05077531  obj
X   2.4331006069174543e-02           0.02433101  D(1)
X  -2.8980780513591580e-02          -0.02898078  D(2)
X  -2.7779093350995165e-01          -0.27779093  D(3)
X   2.2218376750406332e-02           0.02221838  D(4)
XStep length = 1 
X
Xtheta_loop 1
X  -2.4328993930825459e-02          -0.02432899  theta(1)
X   1.0098592194864084e+00           1.00985922  theta(2)
X  -1.0157109335099517e+00          -1.01571093  theta(3)
X  -4.9140162324959363e-01          -0.49140162  theta(4)
X   3.2351520567053427e-02           0.03235152  obj
X  -1.4057031119702702e-03          -0.00140570  D(1)
X   5.4557838716931487e-03           0.00545578  D(2)
X  -1.0039354203311036e-01          -0.10039354  D(3)
X  -1.3173231905220829e-02          -0.01317323  D(4)
XStep length = 1 
X
Xtheta_loop 2
X  -2.5734697042795730e-02          -0.02573470  theta(1)
X   1.0153150033581015e+00           1.01531500  theta(2)
X  -1.1161044755430620e+00          -1.11610448  theta(3)
X  -5.0457485515481448e-01          -0.50457486  theta(4)
X   3.0497613121941033e-02           0.03049761  obj
X  -1.5509486383662779e-04          -0.00015509  D(1)
X   3.6499057445712069e-04           0.00036499  D(2)
X   4.2218191744343219e-04           0.00042218  D(3)
X  -3.2672143437975117e-04          -0.00032672  D(4)
XStep length = 1 
X
Xtheta_loop 3
X  -2.5889791906632358e-02          -0.02588979  theta(1)
X   1.0156799939325587e+00           1.01567999  theta(2)
X  -1.1156822936256185e+00          -1.11568229  theta(3)
X  -5.0490157658919421e-01          -0.50490158  theta(4)
X   3.0495537203056537e-02           0.03049554  obj
X   9.7321692293949851e-08           0.00000010  D(1)
X  -3.3659920289733601e-07          -0.00000034  D(2)
X  -1.5374080636796911e-05          -0.00001537  D(3)
X  -1.3314150623113408e-06          -0.00000133  D(4)
XStep length = 1 
X
Xtheta_loop 4
X  -2.5889694584940063e-02          -0.02588969  theta(1)
X   1.0156796573333557e+00           1.01567966  theta(2)
X  -1.1156976677062553e+00          -1.11569767  theta(3)
X  -5.0490290800425652e-01          -0.50490291  theta(4)
X   3.0495537193052542e-02           0.03049554  obj
X  -3.6229294260247439e-09          -0.00000000  D(1)
X   1.2413365101829759e-08           0.00000001  D(2)
X   5.4662401885543252e-07           0.00000055  D(3)
X   4.8150321542521305e-08           0.00000005  D(4)
XStep length = 1 
X
Xtheta_loop 5
X  -2.5889698207869488e-02          -0.02588970  theta(1)
X   1.0156796697467207e+00           1.01567967  theta(2)
X  -1.1156971210822364e+00          -1.11569712  theta(3)
X  -5.0490285985393502e-01          -0.50490286  theta(4)
X   3.0495537193039934e-02           0.03049554  obj
X   1.2871068769735452e-10           0.00000000  D(1)
X  -4.4115387457665704e-10          -0.00000000  D(2)
X  -1.9437985890799474e-08          -0.00000002  D(3)
X  -1.7124136454193738e-09          -0.00000000  D(4)
XStep length = 1 
X
Xtheta_loop 6
X  -2.5889698079158800e-02          -0.02588970  theta(1)
X   1.0156796693055670e+00           1.01567967  theta(2)
X  -1.1156971405202223e+00          -1.11569714  theta(3)
X  -5.0490286156634867e-01          -0.50490286  theta(4)
X   3.0495537193039886e-02           0.03049554  obj
X  -4.5771437765728809e-12          -0.00000000  D(1)
X   1.5687617718772477e-11           0.00000000  D(2)
X   6.9121248119946195e-10           0.00000000  D(3)
X   6.0893027878551739e-11           0.00000000  D(4)
XStep length = .9 
X
Xtheta_loop 7
X  -2.5889698083278231e-02          -0.02588970  theta(1)
X   1.0156796693196859e+00           1.01567967  theta(2)
X  -1.1156971398981310e+00          -1.11569714  theta(3)
X  -5.0490286151154495e-01          -0.50490286  theta(4)
X   3.0495537193039865e-02           0.03049554  obj
X  -3.1123169737974754e-13          -0.00000000  D(1)
X   1.0666118487966118e-12           0.00000000  D(2)
X   4.6999452916535867e-11           0.00000000  D(3)
X   4.1405133028926090e-12           0.00000000  D(4)
XA line search did not improve this estimate.
X
Xvar_loop 1
X   1.1729052766553795e-03           0.00117291  var(1,1)
X
Xtheta_loop 0
X  -2.5889698083278231e-02          -0.02588970  theta(1)
X   1.0156796693196859e+00           1.01567967  theta(2)
X  -1.1156971398981310e+00          -1.11569714  theta(3)
X  -5.0490286151154495e-01          -0.50490286  theta(4)
X   2.5999999999999996e+01          26.00000000  obj
X  -3.1122653130181253e-13          -0.00000000  D(1)
X   1.0666063107489048e-12           0.00000000  D(2)
X   4.6999396801498302e-11           0.00000000  D(3)
X   4.1405085967972343e-12           0.00000000  D(4)
XA line search did not improve this estimate.
X
X
X     **********************************************************************
X     *                                                                    *
X     *                               theta                                *
X     *                                                                    *
X     **********************************************************************
X 
X 
X                                           Col  1
X 
X                               Row  1  -0.0258897
X                               Row  2     1.01568
X                               Row  3    -1.11570
X                               Row  4   -0.504903
X
X
X
X     **********************************************************************
X     *                                                                    *
X     *                                var                                 *
X     *                 (corrected for degrees of freedom)                 *
X     *                                                                    *
X     **********************************************************************
X 
X 
X                                           Col  1
X 
X                               Row  1  0.00117291
X
X
X
X     **********************************************************************
X     *                                                                    *
X     *                                 V                                  *
X     *                             (rank = 4)                             *
X     *                                                                    *
X     **********************************************************************
X 
X 
X                         Col  1      Col  2      Col  3      Col  4
X 
X             Row  1  0.00015936  -7.872e-05 -0.00017711  -4.409e-05
X             Row  2  -7.872e-05   9.876e-05  0.00060702  -1.851e-06
X             Row  3 -0.00017711  0.00060702   0.0267460  0.00235621
X             Row  4  -4.409e-05  -1.851e-06  0.00235621  0.00065829
X
END_OF_FILE
if test 11585 -ne `wc -c <'ch1eg1/detail.bak'`; then
    echo shar: \"'ch1eg1/detail.bak'\" unpacked with wrong size!
fi
# end of 'ch1eg1/detail.bak'
fi
if test -f 'ch6eg2/hansen.dat' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'ch6eg2/hansen.dat'\"
else
echo shar: Extracting \"'ch6eg2/hansen.dat'\" \(11280 characters\)
sed "s/^X//" >'ch6eg2/hansen.dat' <<'END_OF_FILE'
X  381.9   176.6850    0.0093695102   0.6818539
X  383.7   176.9050    0.0093310997   0.6823039
X  388.3   177.1460    0.0049904501   0.6814319
X  385.5   177.3650    0.0383739690   0.6830091
X  389.7   177.5910    0.0204769890   0.6846292
X  390.0   177.8300    0.0007165600   0.6876923
X  389.2   178.1010    0.0371922290   0.6893628
X  390.7   178.3760   -0.0113433900   0.6910673
X  393.6   178.6570   -0.0472779090   0.6930894
X  394.2   178.9210    0.0164727200   0.6945713
X  394.1   179.1530    0.0194594210   0.6950013
X  396.5   179.3860    0.0296911900   0.6958386
X  396.8   179.5970   -0.0664901060   0.6960685
X  395.4   179.7880    0.0114439700   0.6967628
X  399.1   180.0070   -0.0114419700   0.6983212
X  404.2   180.2220   -0.0163223000   0.7013855
X  399.8   180.4440    0.0328373610   0.7016008
X  401.3   180.6710    0.0231378990   0.7024670
X  402.0   180.9450   -0.0210754290   0.7034826
X  400.4   181.2380    0.0296860300   0.7047952
X  400.2   181.5280   -0.0568203400   0.7061469
X  402.9   181.7960   -0.0045937700   0.7078680
X  403.8   182.0420    0.0472565590   0.7100049
X  401.6   182.2870    0.0478186380   0.7109064
X  404.0   182.5200    0.0654135870   0.7106436
X  405.7   182.7420    0.0364446900   0.7108701
X  409.4   182.9920    0.0318523910   0.7105520
X  410.1   183.2170    0.0058811302   0.7100707
X  412.1   183.4520    0.0251120610   0.7100218
X  412.4   183.6910   -0.0296279510   0.7109602
X  410.4   183.9580    0.0303546690   0.7127193
X  411.5   184.2430    0.0251584590   0.7132442
X  413.7   184.5240   -0.0189705600   0.7138023
X  415.9   184.7830    0.0265103900   0.7136331
X  419.0   185.0160    0.0470347110   0.7136038
X  420.5   185.2420    0.0006585300   0.7143876
X  420.8   185.4520   -0.0358958100   0.7155418
X  420.6   185.6500    0.0197925490   0.7177841
X  423.4   185.8740   -0.0055647301   0.7191781
X  424.8   186.0870   -0.0615112410   0.7203390
X  427.0   186.3140   -0.0834698080   0.7206089
X  425.2   186.5380   -0.0809235570   0.7208373
X  427.0   186.7900    0.0659098630   0.7203747
X  428.5   187.0580    0.0226466300   0.7218203
X  431.8   187.3230   -0.0487761200   0.7264938
X  431.0   187.5740    0.0039394898   0.7262181
X  433.6   187.7960    0.1114552000   0.7269373
X  434.1   188.0130    0.0139081300   0.7270214
X  434.7   188.2130    0.0508059190   0.7292386
X  433.7   188.3870   -0.0226500000   0.7299977
X  436.2   188.5800    0.0347222910   0.7297111
X  437.0   188.7900    0.0479895880   0.7295194
X  436.9   189.0180    0.0206833590   0.7308308
X  440.2   189.2420   -0.0178168900   0.7319400
X  442.1   189.4960   -0.0018435300   0.7335444
X  445.6   189.7610    0.0536292610   0.7349641
X  443.8   190.0280   -0.0126571200   0.7347905
X  444.2   190.2650    0.0286585090   0.7361549
X  445.8   190.4720   -0.0047020698   0.7375505
X  449.5   190.6680    0.0221940800   0.7385984
X  450.1   190.8580    0.0256042290   0.7398356
X  453.7   191.0470    0.0181333610   0.7399162
X  456.6   191.2450    0.0173465290   0.7402540
X  456.7   191.4470    0.0051271599   0.7407488
X  462.1   191.6660    0.0166149310   0.7405324
X  463.8   191.8890    0.0158939310   0.7416990
X  466.0   192.1310    0.0202899800   0.7429185
X  468.5   192.3760   -0.0109651800   0.7432231
X  468.0   192.6310    0.0315313120   0.7448718
X  470.0   192.8470    0.0100951200   0.7457447
X  468.0   193.0390    0.0013465700   0.7465812
X  474.4   193.2230    0.0034312201   0.7476813
X  474.5   193.3930    0.0377800500   0.7481560
X  477.4   193.5400    0.0066147698   0.7488479
X  474.5   193.7090   -0.0107356600   0.7506849
X  479.6   193.8880    0.0345496910   0.7525021
X  481.2   194.0870   -0.0047443998   0.7554032
X  479.5   194.3030   -0.0505878400   0.7593326
X  484.3   194.5280    0.0169978100   0.7602726
X  485.3   194.7610    0.0299301090   0.7601484
X  488.7   194.9970    0.0323472920   0.7605893
X  497.2   195.1950    0.0293272190   0.7626710
X  497.1   195.3720    0.0008636100   0.7648361
X  499.0   195.5390    0.0121703600   0.7671343
X  500.1   195.6880    0.0100357400   0.7696461
X  501.5   195.8310   -0.0102875900   0.7730808
X  502.9   195.9990   -0.0215729900   0.7757009
X  505.8   196.1780    0.0233628400   0.7785686
X  504.8   196.3720   -0.0509349700   0.7793185
X  507.5   196.5600   -0.0109703900   0.7812808
X  510.9   196.7620   -0.0118703500   0.7827363
X  508.3   196.9840   -0.0748946070   0.7867401
X  510.2   197.2070   -0.0066132201   0.7894943
X  509.8   197.3980    0.0464050400   0.7910945
X  512.1   197.5720    0.0138342800   0.7922281
X  513.5   197.7360    0.0047225100   0.7933788
X  516.0   197.8920    0.0838221310   0.7941861
X  517.7   198.0370    0.0098125497   0.7948619
X  519.0   198.2060    0.0433843100   0.7959538
X  521.1   198.3630    0.0420965220   0.7965842
X  521.0   198.5370   -0.0415207000   0.7988484
X  523.1   198.7120    0.0232013710   0.8015676
X  522.1   198.9110    0.0482556600   0.8038690
X  525.5   199.1130   -0.0056581302   0.8058991
X  528.2   199.3110    0.0336121990   0.8076486
X  524.9   199.4980   -0.0276739710   0.8094875
X  527.9   199.6570    0.0078005102   0.8124645
X  531.9   199.8080    0.0307225010   0.8155668
X  533.0   199.9200   -0.0389530290   0.8200750
X  533.9   200.0560   -0.0311505910   0.8231879
X  539.8   200.2080    0.0068653398   0.8262319
X  540.0   200.3610    0.0898963210   0.8285185
X  541.2   200.5360    0.0230161700   0.8318551
X  547.8   200.7060    0.0118528200   0.8335159
X  550.9   200.8980   -0.0211507900   0.8359049
X  552.4   201.0950    0.0163246690   0.8388849
X  551.0   201.2900    0.0422958400   0.8421053
X  552.1   201.4660    0.0111537600   0.8462235
X  556.7   201.6210    0.0562853110   0.8492905
X  554.1   201.7600   -0.0372401590   0.8521928
X  557.0   201.8810   -0.0072337599   0.8560144
X  561.2   202.0230   -0.0502119700   0.8578047
X  560.6   202.1610    0.0314719300   0.8619336
X  561.9   202.3310    0.0213753300   0.8667023
X  566.5   202.5070    0.0029275999   0.8704325
X  563.9   202.6770   -0.0623450020   0.8751552
X  565.9   202.8770   -0.0630705430   0.8784238
X  569.4   203.0900    0.0504970810   0.8816298
X  568.2   203.3020   -0.0220447110   0.8856037
X  573.1   203.5000    0.0547974710   0.8888501
X  572.5   203.6750   -0.0314589110   0.8939738
X  572.4   203.8490   -0.0180749090   0.8981481
X  577.2   204.0080   -0.0763489600   0.9019404
X  578.1   204.1560    0.0597185420   0.9058986
X  577.7   204.3350   -0.0023485899   0.9077376
X  577.1   204.5050   -0.0995834470   0.9123202
X  580.3   204.6920   -0.0611347710   0.9155609
X  582.0   204.8780   -0.0502832790   0.9176976
X  582.8   205.0860    0.0746088620   0.9208991
X  584.7   205.2940    0.0502020900   0.9235505
X  588.5   205.5070    0.0426676610   0.9276126
X  587.3   205.7070   -0.0160981810   0.9324025
X  587.6   205.8840    0.0521828200   0.9361811
X  592.6   206.0760    0.0617985200   0.9399258
X  592.2   206.2420    0.0492740680   0.9414049
X  594.5   206.3930    0.0149685600   0.9434819
X  592.4   206.5670    0.0441647210   0.9469953
X  596.1   206.7260    0.0341992900   0.9506794
X  596.3   206.8910   -0.0365711710   0.9548885
X  598.5   207.0530    0.0043891501   0.9597327
X  597.3   207.2370   -0.0398038400   0.9630002
X  599.1   207.4330    0.0409017500   0.9679519
X  601.1   207.6270   -0.0056930701   0.9698885
X  601.7   207.8000   -0.0395274310   0.9729101
X  604.9   207.9490   -0.0000956400   0.9752025
X  608.8   208.0880    0.0907427070   0.9797963
X  607.9   208.1960    0.0241155400   0.9825629
X  610.3   208.3100    0.0308808110   0.9875471
X  618.9   208.4470    0.0091922097   0.9891743
X  620.6   208.5690    0.0066767102   0.9911376
X  622.3   208.7120    0.0176741590   0.9942150
X  623.7   208.8460   -0.0221355410   0.9961520
X  627.6   208.9880   -0.0018799200   0.9996813
X  629.7   209.1530    0.0382015890   1.0031760
X  631.7   209.3170   -0.0064313002   1.0079150
X  638.2   209.4570    0.0099495398   1.0117520
X  639.8   209.5840    0.0497901590   1.0151610
X  640.7   209.7110    0.0116306100   1.0190420
X  643.4   209.8090   -0.0253177100   1.0247120
X  645.3   209.9050   -0.0398146990   1.0309930
X  643.3   210.0340   -0.0054550399   1.0399500
X  642.1   210.1540   -0.0464594700   1.0478120
X  643.2   210.2860   -0.0183557910   1.0541040
X  646.0   210.4100   -0.0088413004   1.0603720
X  651.9   210.5560    0.0521348010   1.0632000
X  643.4   210.7150   -0.0302029100   1.0792660
X  651.3   210.8630    0.0522540810   1.0815290
X  649.5   210.9840   -0.0018884100   1.0896070
X  651.3   211.0970   -0.1165516000   1.0993400
X  647.7   211.2070    0.0153318600   1.1093100
X  648.4   211.3110   -0.0013036400   1.1215300
X  646.2   211.4110    0.0038444500   1.1363350
X  645.9   211.5220   -0.0243075400   1.1489390
X  648.6   211.6370   -0.0433935780   1.1558740
X  649.3   211.7720   -0.0352610800   1.1667950
X  650.3   211.9010   -0.0193944290   1.1737660
X  653.5   212.0510   -0.0730255170   1.1802600
X  654.5   212.2160   -0.0852853730   1.1926660
X  652.7   212.3830   -0.1098341000   1.2043820
X  654.5   212.5180    0.1671594000   1.2122230
X  651.2   212.6370   -0.0397416390   1.2205160
X  650.3   212.7480   -0.0234328400   1.2278950
X  653.7   212.8440    0.1358016000   1.2337460
X  657.4   212.9390    0.0607054380   1.2376030
X  659.4   213.0560    0.0293416310   1.2406730
X  659.7   213.1870    0.0470072290   1.2457180
X  670.4   213.3930    0.0546782990   1.2502980
X  669.7   213.5590    0.0517648310   1.2593700
X  668.3   213.7410   -0.0637501480   1.2721830
X  670.1   213.9000   -0.0203062710   1.2786150
X  670.2   214.0550   -0.0366309580   1.2821550
X  670.8   214.2000    0.0609995690   1.2904000
X  674.1   214.3210    0.0314961600   1.2966920
X  677.4   214.4460   -0.0105694800   1.3039560
X  684.3   214.5610    0.1251743000   1.3081980
X  682.9   214.6550    0.0012425600   1.3069260
X  687.1   214.7620    0.0300192200   1.3092710
X  690.6   214.8810   -0.0108725300   1.3132060
X  688.7   215.0180   -0.0088088503   1.3206040
X  695.0   215.1520    0.0472505990   1.3256120
X  696.8   215.3110   -0.0073758499   1.3307980
X  699.6   215.4780    0.0005799900   1.3381930
X  702.5   215.6420    0.0261333100   1.3449110
X  705.6   215.7920   -0.0214380810   1.3520410
X  709.7   215.9240    0.0046152598   1.3587430
X  715.8   216.0570    0.0585772800   1.3657450
X  717.6   216.1860   -0.0398427810   1.3720740
X  719.3   216.3000   -0.0162227190   1.3831500
X  716.5   216.4360   -0.0106509200   1.3884160
X  719.1   216.5650    0.0038957901   1.3953550
X  722.6   216.7120   -0.0126387400   1.4014670
X  721.5   216.8630    0.0509454310   1.4105340
X  728.3   217.0300   -0.0156951400   1.4159000
X  727.0   217.2070   -0.0140849800   1.4244840
X  729.1   217.3740    0.0006794800   1.4295710
X  735.7   217.5230   -0.0394544790   1.4350960
X  739.4   217.6550    0.0419719890   1.4442790
X  740.1   217.7850    0.0052549900   1.4508850
X  738.0   217.8810   -0.0568409600   1.4581300
X  744.8   217.9870   -0.0121089800   1.4663000
X  750.5   218.1310    0.0318689010   1.4743500
X  750.4   218.2610    0.0833722430   1.4862740
X  750.3   218.4040    0.0186665390   1.5033990
X  753.1   218.5480   -0.0129163500   1.5146730
X  755.6   218.7200    0.0564879100   1.5199840
X  761.1   218.9090    0.0372171590   1.5284460
X  765.4   219.0780   -0.0063229799   1.5412860
X  765.2   219.2360   -0.1017461000   1.5541030
X  768.0   219.3840    0.0313147900   1.5640620
X  774.1   219.5300    0.0166718100   1.5694350
END_OF_FILE
if test 11280 -ne `wc -c <'ch6eg2/hansen.dat'`; then
    echo shar: \"'ch6eg2/hansen.dat'\" unpacked with wrong size!
fi
# end of 'ch6eg2/hansen.dat'
fi
if test -f 'nlopr.cc' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'nlopr.cc'\"
else
echo shar: Extracting \"'nlopr.cc'\" \(9210 characters\)
sed "s/^X//" >'nlopr.cc' <<'END_OF_FILE'
X/* ---------------------------------------------------------------------------
X
Xnlmdl: nlopr.cc
X
Xnlmdl is a C++ implementation of the statistical methods in A. Ronald 
XGallant, "Nonlinear Statistical Models," New York: John Wiley and Sons, 
X1987, ISBN 0-471-80260-3, using a matrix class realmat that is distributed 
Xwith it.  The header files nlmdl.h and realmat.h describe the use of the 
Xprogram and matrix class, respectively.  
X
XCopyright (C) 1990.
X
XA. Ronald Gallant
XP.O. Box 5513 
XRaleigh NC 27650-5513 
XUSA   
X
XPermission to use, copy, modify, and distribute this software and its 
Xdocumentation for any purpose and without fee is hereby granted, provided 
Xthat the above copyright notice appear in all copies and that both that 
Xcopyright notice and this permission notice appear in supporting 
Xdocumentation.  
X
XThis software is provided "as is" without any expressed or implied warranty.
X
X------------------------------------------------------------------------------
X
XThis is the collection of operators used by nlmdl.  They act on s, of class 
Xstatus, using m, of class model; s must have been filled in and the function 
Xinitialize(), of class model, must have been called before using any of these 
Xoperators.  
X
X--------------------------------------------------------------------------- */
X
Xint line_search(char* msg)
X{
X  REAL    norm_D, norm_theta;
X  REAL    step_length;
X  REAL    save_obj = s.obj;
X  realmat save_theta = s.theta;
X  realmat ss(1,1);
X  
X  ss = T(s.D) * s.D;
X  norm_D = sqrt(ss[1]);
X
X  ss = T(s.theta) * s.theta;
X  norm_theta = sqrt(ss[1]);
X
X  if ( norm_D < s.tol*(norm_theta + s.eps) ) {
X    strcpy(msg,"Tolerence check passed.\n");
X    return 1;
X  }
X
X  for (step_length=1; step_length >= 0.5; step_length -= 0.1) {
X
X    s.theta = save_theta + step_length * s.D;
X
X    (*opr_obj)();
X
X    if (s.obj < save_obj) {
X      sprintf(msg,"Step length = %g \n",step_length);
X      return 0 ;
X    }
X  }
X
X  for (step_length=0.5; step_length > 1.0e-13; step_length *= 0.5) {
X
X    s.theta = save_theta + step_length * s.D;
X
X    (*opr_obj)();
X
X    if (s.obj < save_obj) {
X      sprintf(msg,"Step length = %g \n",step_length);
X      return 0;
X    }
X  }
X
X  strcpy(msg,"A line search did not improve this estimate.\n");
X  s.obj = save_obj;
X  s.theta = save_theta;
X  return 1;
X}
X
X
Xvoid SUR_obj()
X{
X  INTEGER t; 
X  realmat sse(1,1,(REAL)0 );
X  realmat varinv = invpsd(s.var,s.eps);
X
X  for (t=1; t<=s.n; t++) 
X    sse = sse + T(m.e(t)) * varinv * m.e(t);
X
X  s.obj = sse[1];
X}
X
X
Xvoid SUR_mgn()
X{
X  INTEGER t; 
X  realmat sse;
X  realmat varinv = invpsd(s.var,s.eps);
X
X  sse.resize(1,1,(REAL)0 );
X  s.V.resize(s.p, s.p, (REAL)0 );
X  s.D.resize(s.p, 1, (REAL)0 );
X
X  for(t=1; t<=s.n; t++) {
X    sse = sse + T(m.e(t))    * varinv * m.e(t);
X    s.V = s.V + T(m.dele(t)) * varinv * m.dele(t);
X    s.D = s.D + T(m.dele(t)) * varinv * m.e(t);
X  }
X
X  s.obj = sse[1];
X  s.V = invpsd(s.V,s.eps);
X  s.D = - s.V * s.D;
X}
X
X
Xvoid SUR_var(int var_loop)
X{
X  INTEGER i,j,t;
X  REAL fn;
X  
X  if (rows(s.var)==0 || cols(s.var)==0) {
X    s.var.resize(s.M,s.M,(REAL)0 );
X    for (i=1; i<=s.M; i++) s.var.elem(i,i)=1.0;
X  }
X
X  if (var_loop == 0) return;
X
X  for (i=1; i<=s.M; i++) 
X  for (j=1; j<=s.M; j++) 
X    s.var.elem(i,j) = (REAL)0 ;
X
X  for (t=1; t<=s.n; t++) 
X    s.var = s.var + m.e(t) * T(m.e(t));
X
X  if (s.M == 1 && s.n > s.p) {
X    fn = s.n - s.p;
X    strcpy(s.df,"corrected");
X  }
X  else {
X    fn = s.n;
X    strcpy(s.df,"uncorrected");
X  }
X
X  for (i=1; i<=s.M; i++) 
X  for (j=1; j<=s.M; j++) 
X    s.var.elem(i,j) = s.var.elem(i,j)/fn;
X}
X
X
Xvoid SUR_V() 
X{ 
X  INTEGER t; 
X  INTEGER tau; 
X  INTEGER i; 
X  REAL    x,weight;
X  realmat varinv = invpsd(s.var,s.eps);
X  
X  if (strcmp(s.vartype,"heteroskedastic") == 0 || s.MA > 0) {
X
X    realmat I(s.p,s.p,(REAL)0 );
X    realmat I_tau;
X
X    for (tau=0; tau<=s.MA; tau++) {
X
X      I_tau.resize(s.p,s.p,(REAL)0 );
X
X      for (t=tau+1; t<=s.n; t++)
X        I_tau = I_tau 
X                + T(m.dele(t)) * varinv * m.e(t)  
X                  * T(m.e(t-tau)) * varinv * m.dele(t-tau);
X
X      if (strcmp(s.weights,"Parzen") == 0 && tau > 0) {
X        x = tau/(REAL)s.MA;
X
X        if ( x < 0.5 ) 
X          weight = 1.0 - 6.0*pow(x,2) + 6.0*pow(x,3);
X        else
X          weight = 2.0*pow((1.0 - x),3);
X      }
X      else {
X        weight = 1.0;
X      }
X
X      I = I + weight*I_tau;
X
X      if (tau > 0)
X        I = I + weight*T(I_tau);
X    }
X
X    s.V = s.V * I * s.V;
X  }
X
X  s.rank = 0;
X  for (i=1; i<=s.p; i++)
X    if (s.V.elem(i,i) > (REAL)0  ) s.rank++;
X
X  return;
X}
X
X
Xrealmat qZ;
X
Xvoid opr_qZ(INTEGER t)
X
X{
X  INTEGER alpha, i, ii;
X
X  realmat q_tmp(s.M,1);
X  realmat Z_tmp(s.K,1);
X
X  qZ.resize(s.M*s.K,1);
X
X  q_tmp = m.e(t);
X  Z_tmp = m.Z(t);
X
X  for (alpha=1; alpha<=s.M; alpha++) {
X  for (i=1; i<=s.K; i++)             {
X
X    ii = s.K*(alpha-1) + i;
X
X    qZ[ii] = q_tmp[alpha] * Z_tmp[i];
X  }
X  }
X}
X
X
Xrealmat QZ;
X
Xvoid opr_QZ(INTEGER t)
X{
X  INTEGER alpha, i, ii, k;
X
X  realmat Q_tmp(s.M,s.p);
X  realmat Z_tmp(s.K,1);
X
X  QZ.resize(s.M*s.K,s.p);
X
X  Q_tmp = m.dele(t);
X  Z_tmp = m.Z(t);
X
X  for (k=1; k<=s.p; k++)             {
X  for (alpha=1; alpha<=s.M; alpha++) {
X  for (i=1; i<=s.K; i++)             {
X
X    ii = s.K*(alpha-1) + i;
X
X    QZ.elem(ii,k) = Q_tmp.elem(alpha,k) * Z_tmp[i];
X  }
X  }
X  }
X}
X
X
Xrealmat qZ_mts;
X
Xvoid opr_qZ_mts()
X{ 
X
X  INTEGER t;
X  
X  qZ_mts.resize(s.M*s.K, 1, (REAL)0 );
X
X  for (t=1; t<=s.n; t++) {
X
X    opr_qZ(t);
X
X    qZ_mts = qZ_mts + qZ;
X
X  }
X}
X
X
Xrealmat QZ_mts;
X
Xvoid opr_QZ_mts()
X{ 
X  INTEGER t;
X  
X  QZ_mts.resize(s.M*s.K, s.p, (REAL)0 );
X
X  for (t=1; t<=s.n; t++) {
X
X    opr_QZ(t);
X
X    QZ_mts = QZ_mts + QZ;
X
X  }
X}
X
X
Xrealmat ZZ;
X
Xvoid opr_ZZ()
X{
X  INTEGER t;
X
X  ZZ.resize(s.K, s.K, (REAL)0 );
X
X  for (t=1; t<=s.n; t++)
X    ZZ = ZZ + m.Z(t) * T(m.Z(t));
X}
X
X
Xvoid TSLS_obj() 
X{
X
X  INTEGER alpha, i, ii;
X  INTEGER beta,  j, jj;
X
X  realmat varinv = invpsd(s.var,s.eps);
X
X  opr_qZ_mts();
X  opr_ZZ();
X
X  realmat ZZinv = invpsd(ZZ,s.eps);
X  s.obj = (REAL)0 ;
X
X  for (alpha=1; alpha<=s.M; alpha++) {
X  for (i=1; i<=s.K; i++)             {
X  for (beta=1; beta<=s.M; beta++)    {
X  for (j=1; j<=s.K; j++)             {
X
X    ii = s.K*(alpha-1) + i;
X    jj = s.K*(beta-1)  + j;
X
X    s.obj += qZ_mts[ii] * qZ_mts[jj] 
X             * varinv.elem(alpha,beta) * ZZinv.elem(i,j);
X  }
X  }
X  }
X  }
X}
X
X
Xvoid TSLS_mgn() 
X{ 
X  INTEGER alpha, i, ii;
X  INTEGER beta,  j, jj;
X  INTEGER k,l;
X
X  realmat varinv = invpsd(s.var,s.eps);
X
X  opr_qZ_mts();
X  opr_QZ_mts();
X  opr_ZZ();
X
X  realmat ZZinv = invpsd(ZZ,s.eps);
X
X  s.obj = (REAL)0 ;
X  s.V.resize(s.p, s.p, (REAL)0 );
X  s.D.resize(s.p, 1, (REAL)0 );
X
X  for (alpha=1; alpha<=s.M; alpha++) {
X  for (i=1; i<=s.K; i++)             {
X  for (beta=1; beta<=s.M; beta++)    {
X  for (j=1; j<=s.K; j++)             {
X
X    ii = s.K*(alpha-1) + i;
X    jj = s.K*(beta-1)  + j;
X
X    s.obj += qZ_mts[ii] * qZ_mts[jj] 
X             * varinv.elem(alpha,beta) * ZZinv.elem(i,j);
X
X  for (k=1; k<=s.p; k++)             {
X
X    s.D[k] += QZ_mts.elem(ii,k) * qZ_mts[jj] 
X              * varinv.elem(alpha,beta) * ZZinv.elem(i,j);
X
X  for (l=1; l<=s.p; l++)             {
X
X    s.V.elem(k,l) += QZ_mts.elem(ii,k) * QZ_mts.elem(jj,l) 
X                     * varinv.elem(alpha,beta) * ZZinv.elem(i,j);
X
X  }
X  }
X  }
X  }
X  }
X  }
X
X  s.V = invpsd(s.V,s.eps);
X
X  s.D = - s.V * s.D;
X
X}
X
X
Xvoid TSLS_V() 
X{ 
X  INTEGER i;
X
X  s.rank = 0;
X  for (i=1; i<=s.p; i++)
X    if (s.V.elem(i,i) > (REAL)0  ) s.rank++;
X
X  return;
X};
X
X
Xvoid GMM_obj() 
X{ 
X
X  realmat sse(1,1);
X  realmat varinv = invpsd(s.var,s.eps);
X
X  opr_qZ_mts();
X
X  sse = T(qZ_mts) * varinv * qZ_mts ;
X
X  s.obj = sse[1];
X}
X
X
Xvoid GMM_mgn() { 
X
X  realmat sse(1,1);
X  realmat varinv = invpsd(s.var,s.eps);
X
X  opr_qZ_mts();
X  opr_QZ_mts();
X
X  sse = T(qZ_mts) * varinv * qZ_mts ;
X
X  s.obj = sse[1];
X
X  s.D = T(QZ_mts) * varinv * qZ_mts ;
X
X  s.V = T(QZ_mts) * varinv * QZ_mts ;
X
X  s.V = invpsd(s.V,s.eps);
X
X  s.D = - s.V * s.D;
X
X}
X
X
Xvoid GMM_var(int var_loop) 
X{
X  INTEGER l = s.M * s.K;
X  INTEGER t; 
X  INTEGER tau; 
X  INTEGER alpha, i, j, ii, jj; 
X  REAL    x,weight;
X
X  strcpy(s.df,"uncorrected");
X
X  if (rows(s.var)==0 || cols(s.var)==0) {
X
X    s.var.resize(l,l,(REAL)0 );
X
X    opr_ZZ();
X
X    for (alpha=1; alpha<=s.M; alpha++) {
X    for (i=1; i<=s.K; i++)             {
X    for (j=1; j<=s.K; j++)             {
X
X      ii = s.K*(alpha-1) + i;
X      jj = s.K*(alpha-1) + j;
X
X      s.var.elem(ii,jj) = ZZ.elem(i,j);
X
X    }
X    }
X    }
X  }
X  if (var_loop == 0) return;
X
X  realmat I(l,l);
X  realmat I_tau(l,l);
X  realmat qZ_lag(l,1);
X
X  for (tau=0; tau<=s.MA; tau++) {
X
X    for (i=1; i<=l; i++)
X    for (j=1; j<=l; j++)
X      I_tau.elem(i,j)=(REAL)0 ;
X
X    for (t=tau+1; t<=s.n; t++) {
X
X      opr_qZ(t-tau);
X      qZ_lag = qZ;
X      opr_qZ(t);
X      
X      I_tau = I_tau + qZ * T(qZ_lag);
X    }
X
X    if (strcmp(s.weights,"Parzen") == 0 && tau > 0) {
X      x = tau/(REAL)s.MA;
X      if ( x < 0.5 ) 
X        weight = 1.0 - 6.0*pow(x,2) + 6.0*pow(x,3);
X      else
X        weight = 2.0*pow((1.0 - x),3);
X        
X    }
X    else {
X      weight = 1.0;
X    }
X
X    I = I + weight*I_tau;
X    if (tau > 0) {
X      I = I + weight*T(I_tau);
X    }
X  }
X
X  s.var = I;
X 
X  return;
X}
X
X
Xvoid GMM_V() 
X{ 
X  INTEGER i;
X
X  s.rank = 0;
X  for (i=1; i<=s.p; i++)
X    if (s.V.elem(i,i) > (REAL)0  ) s.rank++;
X
X  return;
X}
END_OF_FILE
if test 9210 -ne `wc -c <'nlopr.cc'`; then
    echo shar: \"'nlopr.cc'\" unpacked with wrong size!
fi
# end of 'nlopr.cc'
fi
if test -f 'realmat.cc' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'realmat.cc'\"
else
echo shar: Extracting \"'realmat.cc'\" \(9898 characters\)
sed "s/^X//" >'realmat.cc' <<'END_OF_FILE'
X/* ----------------------------------------------------------------------------
X
Xrealmat: realmat.cc
X
Xrealmat is a C++ matrix class. The header file realmat.h describes its use.
X
XCopyright (C) 1990.
X
XA. Ronald Gallant
XP.O. Box 5513 
XRaleigh NC 27650-5513 
XUSA   
X
XPermission to use, copy, modify, and distribute this software and its 
Xdocumentation for any purpose and without fee is hereby granted, provided 
Xthat the above copyright notice appear in all copies and that both that 
Xcopyright notice and this permission notice appear in supporting 
Xdocumentation.  
X
XThis software is provided "as is" without any expressed or implied warranty.
X
X---------------------------------------------------------------------------- */
X#include "realmat.h"
X
Xrealmat::realmat(INTEGER r, INTEGER c, REAL* a)
X{
X  if (r<=0) error("Error, realmat::realmat, Number of rows not positive");
X  if (c<=0) error("Error, realmat::realmat, Number of columns not positive");
X  rows=r; 
X  cols=c; 
X  len=r*c; 
X  x = a;
X}
X
X
Xvoid realmat::realmat_constructor(INTEGER r, INTEGER c, REAL fill_value)
X{
X  if (r<=0) error("Error, realmat::realmat, Number of rows not positive");
X  if (c<=0) error("Error, realmat::realmat, Number of columns not positive");
X  rows=r; 
X  cols=c; 
X  len=r*c; 
X  x = new REAL[len];
X  if (x == 0) error("Error, realmat::realmat, Operator new failed");
X  REAL* top = &(x[len-1]);
X  REAL* t = x;
X  while (t <= top) *t++ = fill_value;
X}
X
Xrealmat::realmat(realmat& a)
X{
X    rows=a.rows;
X    cols=a.cols;
X    if(rows<=0) 
X      error("Error, realmat::realmat, Number of rows not positive");
X    if(cols<=0) 
X      error("Error, realmat::realmat, Number of columns not positive");
X    len=a.rows*a.cols; 
X    x = new REAL[len];
X    if (x == 0) error("Error, realmat::realmat, Operator new failed");
X    REAL* top = &(x[len-1]);
X    REAL* t = x;
X    REAL* u = a.x;
X    while (t <= top) *t++ = *u++;
X}
X
Xvoid realmat::resize_constructor(INTEGER r, INTEGER c, REAL fill_value)
X{
X  if (r<=0) error("Error, realmat::resize, Number of rows not positive");
X  if (c<=0) error("Error, realmat::resize, Number of columns not positive");
X  delete x;
X  rows=r; 
X  cols=c; 
X  len=r*c; 
X  x = new REAL[len];
X  if (x == 0) error("Error, realmat::resize, Operator new failed");
X  REAL* top = &(x[len-1]);
X  REAL* t = x;
X  while (t <= top) *t++ = fill_value;
X}
X
Xrealmat& realmat::operator=(realmat& a)
X{
X  if (this != &a) {
X    delete x;
X    rows=a.rows;
X    cols=a.cols;
X    len=a.len;
X    x = new REAL[len];
X    if (x == 0) error("Error, realmat::operator=, Operator new failed");
X    REAL* top = &(x[len-1]);
X    REAL* t = x;
X    REAL* u = a.x;
X    while (t <= top) *t++ = *u++;
X  }
X  return *this;
X}
X
XREAL& realmat::check1(INTEGER i)
X{
X  if ((1<=i) && (i<=len))
X    return x[i-1];
X  else
X    error("Error, realmat::check1, Index out of range");
X    exit(1); //This keeps the compiler from complaining;
X}
X
XREAL& realmat::check2(INTEGER i, INTEGER j)
X{
X  if ((1<=i) && (1<=j) && (i<=rows) && (j<=cols))
X    return x[i + rows*j - rows - 1];  //  return x[rows*(j-1)+i-1]
X  else
X    error("Error, realmat::check2, Index out of range");
X    exit(1); //This keeps the compiler from complaining;
X}
X
Xrealmat T(realmat& a)
X{
X  INTEGER newrows = a.cols;
X  INTEGER newcols = a.rows;
X  INTEGER newlen = newrows*newcols;
X  REAL*   newx = new REAL[newlen];
X  if (newx == 0) a.error("Error, realmat, T, Operator new failed");
X  INTEGER i,j;
X  for (j = 0; j < a.cols; j++)
X  for (i = 0; i < a.rows; i++)
X    newx[j + newrows*i] = a.x[i + a.rows*j];
X  realmat d(newrows,newcols,newx);
X  return d;
X}
X
Xrealmat operator+(realmat& a, realmat& b)
X{
X  if ((a.cols == b.cols) && (a.rows == b.rows)) {
X    REAL* newx = new REAL[a.len];
X    if (newx == 0) a.error("Error, realmat, operator+, Operator new failed");
X    REAL* top = &(newx[a.len-1]);
X    REAL* t = newx;
X    REAL* u = a.x;
X    REAL* v = b.x;
X    while (t <= top) *t++ = *u++ + *v++;
X    realmat d(a.rows,a.cols,newx);
X    return d;
X  }
X  else
X    a.error("Error, realmat, operator+, Matrices not conformable."); 
X    exit(1); //This keeps the compiler from complaining;
X}
X
Xrealmat operator+(realmat& a)
X{
X  REAL* newx = new REAL[a.len];
X  if (newx == 0) a.error("Error, realmat, operator+, Operator new failed");
X  REAL* top = &(newx[a.len-1]);
X  REAL* t = newx;
X  REAL* u = a.x;
X  while (t <= top) *t++ = *u++;
X  realmat d(a.rows,a.cols,newx);
X  return d;
X}
X
Xrealmat operator-(realmat& a, realmat& b)
X{
X  if ((a.cols == b.cols) && (a.rows == b.rows)) {
X    REAL* newx = new REAL[a.len];
X    if (newx == 0) a.error("Error, realmat, operator-, Operator new failed");
X    REAL* top = &(newx[a.len-1]);
X    REAL* t = newx;
X    REAL* u = a.x;
X    REAL* v = b.x;
X    while (t <= top) *t++ = *u++ - *v++;
X    realmat d(a.rows,a.cols,newx);
X    return d;
X  }
X  else
X    a.error("Error, realmat, operator-, Matrices not conformable."); 
X    exit(1); //This keeps the compiler from complaining;
X}
X
Xrealmat operator-(realmat& a)
X{
X  REAL* newx = new REAL[a.len];
X  if (newx == 0) a.error("Error, realmat, operator-, Operator new failed");
X  REAL* top = &(newx[a.len-1]);
X  REAL* t = newx;
X  REAL* u = a.x;
X  while (t <= top) *t++ = - *u++;
X  realmat d(a.rows,a.cols,newx);
X  return d;
X}
X
Xrealmat operator*(realmat& a, realmat& b)
X{
X  if (a.cols == b.rows) {
X    INTEGER newlen = a.rows*b.cols;
X    REAL*   newx = new REAL[newlen];
X    if (newx == 0) a.error("Error, realmat, operator*, Operator new failed");
X    REAL    zero = 0.0;
X    REAL*   top = &(newx[newlen-1]);
X    REAL*   t = newx;
X    while (t <= top) *t++ = zero;
X    INTEGER i,j,k;
X    for (j = 0; j < b.cols; j++)
X    for (k = 0; k < a.cols; k++)
X    for (i = 0; i < a.rows; i++)
X      newx[i+a.rows*j] += a.x[i+a.rows*k] * b.x[k+b.rows*j];
X    realmat d(a.rows,b.cols,newx);
X    return d;
X  }
X  else {
X    a.error("Error, realmat, operator*, Matrices not conformable."); 
X    exit(1); //this keeps compiler from complaining
X  }
X}
X
Xrealmat operator*(REAL& a, realmat& b)
X{
X  REAL*   newx = new REAL[b.len];
X  if (newx == 0) b.error("Error, realmat, operator*, Operator new failed");
X  REAL* top = &(newx[b.len-1]);
X  REAL* t = newx;
X  REAL* u = b.x;
X  while (t <= top) *t++ = a * *u++;
X  realmat d(b.rows,b.cols,newx);
X  return d;
X}
X
Xrealmat operator*(INTEGER& a, realmat& b)
X{
X  REAL* newx = new REAL[b.len];
X  if (newx == 0) b.error("Error, realmat, operator*, Operator new failed");
X  REAL  f = a;
X  REAL* top = &(newx[b.len-1]);
X  REAL* t = newx;
X  REAL* u = b.x;
X  while (t <= top) *t++ = f * *u++;
X  realmat d(b.rows,b.cols,newx);
X  return d;
X}
X
Xvoid default_realmat_error_handler(const char* msg)
X{
X  cerr << msg << "\n";
X  exit(1);
X}
X
XONE_ARG_ERROR_HANDLER_T realmat_error_handler = default_realmat_error_handler;
X
XONE_ARG_ERROR_HANDLER_T set_realmat_error_handler(ONE_ARG_ERROR_HANDLER_T f)
X{
X  ONE_ARG_ERROR_HANDLER_T old = realmat_error_handler;
X  realmat_error_handler = f;
X  return old;
X}
X
Xvoid realmat::error(const char* msg)
X{
X  (*realmat_error_handler)(msg);
X}
X
Xostream& operator<<(ostream& stream, realmat& a)
X{
X  char    line[256], eol[2] = {'\n','\0'}, bl[3] = {' ','\n','\0'};
X  char    *next,*save,*fcode;
X  REAL    f,af;
X  INTEGER i,j,linesize,maxcol,pad,start,stop,r,c;
X
X  r=rows(a);
X  c=cols(a);
X
X  ((LINESIZE<72)||(LINESIZE>133)) ? (linesize=133) : (linesize=LINESIZE);
X  maxcol = (linesize - 8)/12;
X  if (c < maxcol) maxcol = c;
X  pad = (linesize - 8 - 12*maxcol)/2 + 1;
X  memset(line,' ',pad);
X  save = line + pad;
X
X  start=1;
X  do {
X    stop = start - 1 + maxcol;
X    if (stop > c) stop = c;
X
X    stream << bl;
X    stream << bl;
X
X    next = save;
X    memset(next,' ',6);
X    next = next + 6;
X
X    for (j = start; j <= stop; j++) {
X      if (j < 1000)      {sprintf(next,"      Col%3i",j); next = next+12;}
X      else if (j <32760) {sprintf(next,"      C%5i"  ,j); next = next+12;}
X      else               {sprintf(next,"      TooBig"  ); next = next+12;}
X    }                                   
X
X    memcpy(next,eol,2);
X                          
X    stream << line;
X    stream << bl;
X
X    for (i = 1; i <= r; i++) {
X      next = save;
X      if (i < 1000)      {sprintf(next,"Row%3i",i); next = next+6;}
X      else if (i <32760) {sprintf(next,"R%5i"  ,i); next = next+6;}
X      else               {sprintf(next,"TooBig"  ); next = next+6;}
X      for (j = start; j <= stop; j++) {
X        fcode = "%12.3e";
X        f = a.elem(i,j);
X        af = f; if (f < 0.E0)  af = -f ;
X        if (af < 1.E+8 ) fcode = "%12.0f";
X        if (af < 1.E+5 ) fcode = "%12.1f";
X        if (af < 1.E+4 ) fcode = "%12.2f";
X        if (af < 1.E+3 ) fcode = "%12.3f";
X        if (af < 1.E+2 ) fcode = "%12.4f";
X        if (af < 1.E+1 ) fcode = "%12.5f";
X        if (af < 1.E+0 ) fcode = "%12.6f";
X        if (af < 1.E-1 ) fcode = "%12.7f";
X        if (af < 1.E-2 ) fcode = "%12.8f";
X        if (af < 1.E-4 ) fcode = "%12.3e";
X        if (af < 1.E-30) fcode = "%12.1f";
X        sprintf(next,fcode,f); next = next+12;
X      }
X      memcpy(next,eol,2);
X      stream << line;
X    }
X    start = stop + 1;
X  } while (stop < c);
X
X  return stream;
X}
X
Xrealmat invpsd(realmat& a, REAL eps)
X{
X  if (a.cols != a.rows) 
X    a.error("Error, realmat, invpsd, Matrix not square.");
X  INTEGER i;
X  for (i=0; i<a.rows; i++)
X    if (a.x[i+a.rows*i] < 0) 
X      a.error("Error, realmat, invpsd, Matrix not positive semi-definite.");
X
X  INTEGER newrows = a.cols;
X  INTEGER newcols = a.rows;
X  INTEGER newlen = newrows*newcols;
X  REAL*   newx = new REAL[newlen];
X  if (newx == 0) a.error("Error, realmat, invpsd, Operator new failed");
X
X  REAL* top = &(newx[a.len-1]);
X  REAL* t = newx;
X  REAL* u = a.x;
X    while (t <= top) *t++ = *u++;
X
X  REAL* s = new REAL[newrows];
X  if (s == 0) a.error("Error, realmat, invpsd, Operator new failed");
X
X  dcond(newx,newrows,s,0);
X  INTEGER ier = dsweep(newx,newrows,eps);
X  dcond(newx,newrows,s,1);
X
X  ier++;  //This stops a compiler warning.
X
X  delete s;
X
X  realmat d(newrows,newcols,newx);
X  return d;
X}
END_OF_FILE
if test 9898 -ne `wc -c <'realmat.cc'`; then
    echo shar: \"'realmat.cc'\" unpacked with wrong size!
fi
# end of 'realmat.cc'
fi
echo shar: End of archive 3 \(of 6\).
cp /dev/null ark3isdone
MISSING=""
for I in 1 2 3 4 5 6 ; do
    if test ! -f ark${I}isdone ; then
	MISSING="${MISSING} ${I}"
    fi
done
if test "${MISSING}" = "" ; then
    echo You have unpacked all 6 archives.
    rm -f ark[1-9]isdone
else
    echo You still need to unpack the following archives:
    echo "        " ${MISSING}
fi
##  End of shell archive.
exit 0