[comp.os.os9] REPOST: OS9Lib Part 05/05

ocker@lan.informatik.tu-muenchen.dbp.de (Wolfgang Ocker) (10/20/88)

#! /bin/sh
# This is a shell archive.  Remove anything before this line, then unpack
# it by saving it into a file and typing "sh file".  To overwrite existing
# files, type "sh file -c".  You can also feed this as standard input via
# unshar, or by typing "sh <file", e.g..  If this archive is complete, you
# will see the following message at the end:
#		"End of archive 5 (of 5)."
# Contents:  info.c rnd.c regexp.c
# Wrapped by weo@recsys on Tue Oct 11 14:24:50 1988
PATH=/bin:/usr/bin:/usr/ucb ; export PATH
if test -f 'info.c' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'info.c'\"
else
echo shar: Extracting \"'info.c'\" \(10915 characters\)
sed "s/^X//" >'info.c' <<'END_OF_FILE'
X/*
X *                            SYSINFO Library
X *
X *  Copyrights (c) 1988 by reccoware systems, Wolfgang Ocker, Puchheim
X *
X *
X *
X *                           IMPORTANT NOTICE
X * =====================================================================
X *
X * I  would  like to  establish the SYSINFO  concept as a  STANDARD  for
X * OS-9/68000.  So  please  DON'T CHANGE  ANYTHING.  Please send any bug
X * reports or suggestions to
X *
X *
X *            Wolfgang Ocker
X *            Lochhauserstrasse 35a
X *            D-8039 Puchheim
X *            Tel. +49 89 / 80 77 02
X *
X *            e-mail: weo@recco    (...!pyramid!tmpmbx!recco!weo)
X *                    weo@altger   (...!altnet!altger!weo)
X *                    ocker@lan.informatik.tu-muenchen.dbp.de
X *
X *
X * I will maintain the  SYSINFO package and keep it (upward) compatible!
X * You may not distribute any modified  versions, or programs which rely 
X * on a modified version.
X *
X *              If you don't like SYSINFO, don't use it!
X */
X
X/*
X * Revision history
X *
X *  #    Date     Comments                                              By
X * -------------------------------------------------------------------- ---
X * 00  09/16/88   Prepared for net release                              weo
X * 01  10/06/88   Corrected modlink parameters                          weo
X *
X */
X
X#define PATCHLEVEL 1
X
X#include <stdio.h>
X#include <module.h>
X#include <strings.h>
X#include <procid.h>
X#include <errno.h>
X#include "infomod.h"
X
Xextern int errno;
Xstatic char *Copyright = "Copyrights (c) 1988 by reccoware systems puchheim";
X
X/*
X * l i n k _ i n f o _ m o d
X *
X * Link to SYSINFO data module
X */
Xstatic INFO *
Xlink_info_mod()
X{
X  register mod_exec *info_module;
X
X  if ((info_module = (mod_exec *) modlink(INFO_MODULE_NAME, 
X                                          mktypelang(MT_DATA, ML_ANY))) ==
X      (mod_exec *) -1)
X    return(NULL);   /* can't link */
X
X  return((INFO *) (((char *) info_module) + info_module->_mexec));
X}
X
X/*
X * u n l i n k _ i n f o _ m o d
X *
X * unlink from SYSINFO data module
X */
Xstatic void 
Xunlink_info_mod()
X{
X  (void) munload(INFO_MODULE_NAME, 0x0400);
X}
X
X/*
X * i n f o _ e n t r y
X *
X * Get pointer to an entry within the SYSINFO data module. Needs
X * name of the entry (case sensitiv) and its type.
X */
Xstatic ENTRY *
Xinfo_entry(name, type)
X  register char *name;
X  register int  type;
X{
X  register INFO *info;
X  register int  i;
X
X  if ((info = link_info_mod()) == NULL) /* Link to data module */
X    return(NULL);
X
X  /*
X   * Check revision (for compatiblity reasons)
X   */
X  if (info->rev != REVISION) {
X    unlink_info_mod();
X    return(NULL);
X  }
X
X  for (i = 0; i < info->num; i++)         /* search entry by name */
X    if (!strcmp(info->entry[i].name, name) &&
X        (info->entry[i].type == type))    /* desired type? */
X      return(&(info->entry[i]));          /* all ok, return pointer */
X  
X  unlink_info_mod();
X  errno = E_PNNF;
X  return(NULL);
X}
X
X/*
X * i n f o _ t y p e
X *
X * Determine type of SYSINFO entry. Needs only the name of the entry.
X */
Xint 
Xinfo_type(name)
X  char *name;
X{
X  register INFO *info;
X  register int  i;
X  register int  type;
X
X  if ((info = link_info_mod()) == NULL)     /* Link to data module */
X    return(NULL);
X
X  for (i = 0; i < info->num; i++)           /* Search entry */
X    if (!strcmp(info->entry[i].name, name)) {
X      type = info->entry[i].type;
X      unlink_info_mod();
X      return(type);                         /* found, return type */
X    }
X  
X  unlink_info_mod();
X  errno = E_PNNF;
X  return(FAILED);
X}  
X
X/*
X * i n f o _ s t r
X *
X * Get a string from SYSINFO. Needs name, buffer, and max. length.
X */
Xchar *
Xinfo_str(name, str, len)
X  register char *name;
X  register char *str;
X  register int  len;
X{
X  register ENTRY *entry;
X
X  /*
X   * Get a pointer to the desired entry
X   */
X  if ((entry = info_entry(name, T_STRING)) == NULL)
X    return(NULL);       /* Not found */ 
X
X  (void) strncpy(str, entry->data, len-1);   /* Copy */
X  str[len-1] = '\0';
X  unlink_info_mod();
X  return(str);
X}
X
X/*
X * i n f o _ n u m
X *
X * Get number from SYSINFO
X */
Xint 
Xinfo_num(name)
X  register char *name;
X{
X  register ENTRY *entry;
X
X  /*
X   * Get a pointer to the entry
X   */
X  if ((entry = info_entry(name, T_NUM)) == NULL)
X    return(FAILED);
X
X  unlink_info_mod();
X  return(*((int *) entry->data));
X}
X
X/*
X * i n f o _ i s _ l o c k e d
X *
X * Check, if a lock entry is locked. Needs name.
X */
Xint 
Xinfo_is_locked(name)
X  register char *name;
X{
X  int            EvID;
X  int            status;
X  procid         procdesc;
X  register LOCK  *lock;
X  register ENTRY *entry;
X
X  /*
X   * Remove a leading slash ("/t7" is equal to "t7")
X   */
X  if (name[0] == '/')
X    name++;
X
X  /*
X   * Get pointer to entry
X   */
X  if ((entry = info_entry(name, T_LOCK)) == NULL)
X    return(FAILED);
X
X  /*
X   * Link to the SYSINFO event
X   */
X  if ((EvID = _ev_link(INFO_EVENT_NAME)) == -1) {
X    unlink_info_mod();
X    return(FAILED);
X  }
X  
X  /*
X   * Wait, until we can access the entry.
X   * We should check for a timeout here ... (perhaps alarms?)
X   */
X  while (_ev_wait(EvID, 0, 0) != 0) ;
X
X  /*
X   * Now we can access the entry
X   */
X  lock   = (LOCK *) entry->data;
X  status = lock->status;            /* Get status */
X
X  if (status == ST_LOCKED)          /* Locked? */
X    if (lock->pid == 0)             /* Process ID? */
X      status = ST_FREE;             /* NOT LOCKED! */
X    else
X      /* 
X       * Now we have to check, whether the existing process
X       * still exists. We do this by checking the PID and the
X       * start time of the locking process
X       */
X      if (_get_process_desc(lock->pid, sizeof(procdesc), 
X                            &procdesc) == -1 ||
X          lock->timbeg != procdesc._timbeg ||
X          lock->datbeg != procdesc._datbeg)
X        status = ST_FREE;     /* Meanwhile, the process has died! */
X
X  (void) _ev_signal(EvID, 0);
X  _ev_unlink(EvID);
X  unlink_info_mod();
X
X  return(status == ST_FREE ? OK : FAILED);
X}
X
X/*
X * i n f o _ l o c k
X *
X * Lock a SYSINFO entry
X */
Xint 
Xinfo_lock(name, signal)
X  register char *name;
X  int           signal;
X{
X  int            EvID;
X  register LOCK  *lock;
X  procid         procdesc;
X  register int   timeout;
X  register ENTRY *entry;
X
X  if (name[0] == '/')
X    name++;
X
X  if ((entry = info_entry(name, T_LOCK)) == NULL)
X    return(FAILED);
X
X  if ((EvID = _ev_link(INFO_EVENT_NAME)) == -1) {
X    unlink_info_mod();
X    return(FAILED);
X  }
X  
X  while (_ev_wait(EvID, 0, 0) != 0) ;
X
X  /*
X   * Now we can access the entry
X   */
X  lock = (LOCK *) entry->data;
X  
X  if (lock->status == ST_LOCKED) {    /* locked? */
X    if (lock->pid != 0) {             /* Process ID given? */
X        timeout = 0;
X        while (lock->status == ST_LOCKED &&
X               _get_process_desc(lock->pid, sizeof(procdesc), 
X                                 &procdesc) != -1 &&
X            lock->timbeg == procdesc._timbeg &&
X            lock->datbeg == procdesc._datbeg) {
X  
X          if (timeout++ > 20) {   /* Timeout? */
X            (void) _ev_signal(EvID, 0);
X            _ev_unlink(EvID);
X            unlink_info_mod();
X            return(FAILED);
X          }
X
X          if (lock->signal != -1)           /* May we send a signal to the */
X                                            /* locking process? */
X            (void) kill(lock->pid, lock->signal);
X
X          (void) _ev_signal(EvID, 0);    /* Now others may access */
X          (void) sleep(5);               /* Wait a bit ... */
X          while (_ev_wait(EvID, 0, 0) != 0) ;
X        }
X    }
X  }
X
X  lock->status    = ST_LOCKED;
X  lock->timestamp = time(NULL);
X  lock->pid       = getpid();
X  lock->signal    = signal;     /* A process which want lock may send us */
X                                /* this signal */
X
X  if (_get_process_desc(lock->pid, sizeof(procdesc), &procdesc) != -1) {
X    lock->timbeg = procdesc._timbeg;    /* Our start time */
X    lock->datbeg = procdesc._datbeg;
X  }
X  else {
X    lock->timbeg = 0;
X    lock->datbeg = 0;
X  }
X
X  (void) _ev_signal(EvID, 0);
X  _ev_unlink(EvID);
X  unlink_info_mod();
X  return(OK);
X}
X
X/*
X * i n f o _ u n l o c k
X *
X * Unlock
X */
Xint 
Xinfo_unlock(name)
X  register char *name;
X{
X  int            EvID;
X  procid         procdesc;
X  register LOCK  *lock;
X  register ENTRY *entry;
X
X  if (name[0] == '/')
X    name++;
X
X  if ((entry = info_entry(name, T_LOCK)) == NULL)
X    return(FAILED);
X
X  if ((EvID = _ev_link(INFO_EVENT_NAME)) == -1) {
X    unlink_info_mod();
X    return(FAILED);
X  }
X  
X  while (_ev_wait(EvID, 0, 0) != 0);
X
X  lock = (LOCK *) entry->data;
X
X  if (lock->status == ST_LOCKED && lock->pid == getpid() &&
X      _get_process_desc(lock->pid, sizeof(procdesc), &procdesc) != -1 &&
X      lock->timbeg == procdesc._timbeg &&
X      lock->datbeg == procdesc._datbeg)     /* IS it "our" lock? */
X    lock->status = ST_FREE;     /* Unlock */
X  
X  (void) _ev_signal(EvID, 0);
X  _ev_unlink(EvID);
X  unlink_info_mod();
X  return(OK);
X}
X
X/*
X * i n f o _ c h a n g e
X *
X * Change signal number of a lock
X */
Xint 
Xinfo_change(name, signal)
X  register char *name;
X  int           signal;
X{
X  int            err;
X  int            EvID;
X  register LOCK  *lock;
X  procid         procdesc;
X  register ENTRY *entry;
X
X  if (name[0] == '/')
X    name++;
X
X  if ((entry = info_entry(name, T_LOCK)) == NULL)
X    return(FAILED);
X
X  if ((EvID = _ev_link(INFO_EVENT_NAME)) == -1) {
X    unlink_info_mod();
X    return(FAILED);
X  }
X  
X  while (_ev_wait(EvID, 0, 0) != 0) ;
X
X  lock = (LOCK *) entry->data;
X
X  err = FAILED;
X
X  if (lock->status == ST_LOCKED && lock->pid == getpid() && 
X      _get_process_desc(lock->pid, sizeof(procdesc), &procdesc) != -1 &&
X      lock->timbeg == procdesc._timbeg &&
X      lock->datbeg == procdesc._datbeg) {   /* Locking proc. still existing? */
X    err = OK;
X    lock->signal = signal;    /* new signal code */
X  }
X
X  (void) _ev_signal(EvID, 0);
X  _ev_unlink(EvID);
X  unlink_info_mod();
X  return(err);
X}
X
X/*
X * i n f o _ s i g n a l
X *
X * Send a signal to a locking process
X */
Xint
Xinfo_signal(name)
X  register char *name;
X{
X  int            err;
X  int            EvID;
X  register LOCK  *lock;
X  procid         procdesc;
X  register ENTRY *entry;
X
X  if (name[0] == '/')
X    name++;
X
X  if ((entry = info_entry(name, T_LOCK)) == NULL)
X    return(FAILED);
X
X  if ((EvID = _ev_link(INFO_EVENT_NAME)) == -1) {
X    unlink_info_mod();
X    return(FAILED);
X  }
X  
X  while (_ev_wait(EvID, 0, 0) != 0) ;
X
X  lock = (LOCK *) entry->data;
X
X  err = FAILED;
X
X  if (lock->status == ST_LOCKED &&
X      _get_process_desc(lock->pid, sizeof(procdesc), &procdesc) != -1 &&
X      lock->timbeg == procdesc._timbeg &&
X      lock->datbeg == procdesc._datbeg) {   /* Locking proc. still existing? */
X
X    if (lock->signal != -1) {           /* May we send a signal? */
X      err = OK;
X      (void) kill(lock->pid, lock->signal);    /* Yes, "kill" him! */
X    }
X  }
X
X  (void) _ev_signal(EvID, 0);
X  _ev_unlink(EvID);
X  unlink_info_mod();
X  return(err);
X}
X
END_OF_FILE
if test 10915 -ne `wc -c <'info.c'`; then
    echo shar: \"'info.c'\" unpacked with wrong size!
fi
# end of 'info.c'
fi
if test -f 'rnd.c' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'rnd.c'\"
else
echo shar: Extracting \"'rnd.c'\" \(11902 characters\)
sed "s/^X//" >'rnd.c' <<'END_OF_FILE'
X#ifndef lint
X/*	static char sccsid[] = "@(#)random.c	4.2	(Berkeley)	83/01/02";	*/
X#endif
X
X#include	<stdio.h>
X
X/*
X * random.c:
X * An improved random number generation package.  In addition to the standard
X * rand()/srand() like interface, this package also has a special state info
X * interface.  The initstate() routine is called with a seed, an array of
X * bytes, and a count of how many bytes are being passed in; this array is then
X * initialized to contain information for random number generation with that
X * much state information.  Good sizes for the amount of state information are
X * 32, 64, 128, and 256 bytes.  The state can be switched by calling the
X * setstate() routine with the same array as was initiallized with initstate().
X * By default, the package runs with 128 bytes of state information and
X * generates far better random numbers than a linear congruential generator.
X * If the amount of state information is less than 32 bytes, a simple linear
X * congruential R.N.G. is used.
X * Internally, the state information is treated as an array of longs; the
X * zeroeth element of the array is the type of R.N.G. being used (small
X * integer); the remainder of the array is the state information for the
X * R.N.G.  Thus, 32 bytes of state information will give 7 longs worth of
X * state information, which will allow a degree seven polynomial.  (Note: the 
X * zeroeth word of state information also has some other information stored
X * in it -- see setstate() for details).
X * The random number generation technique is a linear feedback shift register
X * approach, employing trinomials (since there are fewer terms to sum up that
X * way).  In this approach, the least significant bit of all the numbers in
X * the state table will act as a linear feedback shift register, and will have
X * period 2^deg - 1 (where deg is the degree of the polynomial being used,
X * assuming that the polynomial is irreducible and primitive).  The higher
X * order bits will have longer periods, since their values are also influenced
X * by pseudo-random carries out of the lower bits.  The total period of the
X * generator is approximately deg*(2**deg - 1); thus doubling the amount of
X * state information has a vast influence on the period of the generator.
X * Note: the deg*(2**deg - 1) is an approximation only good for large deg,
X * when the period of the shift register is the dominant factor.  With deg
X * equal to seven, the period is actually much longer than the 7*(2**7 - 1)
X * predicted by this formula.
X */
X
X
X
X/*
X * For each of the currently supported random number generators, we have a
X * break value on the amount of state information (you need at least this
X * many bytes of state info to support this random number generator), a degree
X * for the polynomial (actually a trinomial) that the R.N.G. is based on, and
X * the separation between the two lower order coefficients of the trinomial.
X */
X
X#define		TYPE_0		0		/* linear congruential */
X#define		BREAK_0		8
X#define		DEG_0		0
X#define		SEP_0		0
X
X#define		TYPE_1		1		/* x**7 + x**3 + 1 */
X#define		BREAK_1		32
X#define		DEG_1		7
X#define		SEP_1		3
X
X#define		TYPE_2		2		/* x**15 + x + 1 */
X#define		BREAK_2		64
X#define		DEG_2		15
X#define		SEP_2		1
X
X#define		TYPE_3		3		/* x**31 + x**3 + 1 */
X#define		BREAK_3		128
X#define		DEG_3		31
X#define		SEP_3		3
X
X#define		TYPE_4		4		/* x**63 + x + 1 */
X#define		BREAK_4		256
X#define		DEG_4		63
X#define		SEP_4		1
X
X
X/*
X * Array versions of the above information to make code run faster -- relies
X * on fact that TYPE_i == i.
X */
X
X#define		MAX_TYPES	5		/* max number of types above */
X
Xstatic  int		degrees[ MAX_TYPES ]	= { DEG_0, DEG_1, DEG_2,
X								DEG_3, DEG_4 };
X
Xstatic  int		seps[ MAX_TYPES ]	= { SEP_0, SEP_1, SEP_2,
X								SEP_3, SEP_4 };
X
X
X
X/*
X * Initially, everything is set up as if from :
X *		initstate( 1, &randtbl, 128 );
X * Note that this initialization takes advantage of the fact that srandom()
X * advances the front and rear pointers 10*rand_deg times, and hence the
X * rear pointer which starts at 0 will also end up at zero; thus the zeroeth
X * element of the state information, which contains info about the current
X * position of the rear pointer is just
X *	MAX_TYPES*(rptr - state) + TYPE_3 == TYPE_3.
X */
X
Xstatic  long		randtbl[ DEG_3 + 1 ]	= { TYPE_3,
X			    0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342, 
X			    0xde3b81e0, 0xdf0a6fb5, 0xf103bc02, 0x48f340fb, 
X			    0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd, 
X			    0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86, 
X			    0xda672e2a, 0x1588ca88, 0xe369735d, 0x904f35f7, 
X			    0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc, 
X			    0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b, 
X					0xf5ad9d0e, 0x8999220b, 0x27fb47b9 };
X
X/*
X * fptr and rptr are two pointers into the state info, a front and a rear
X * pointer.  These two pointers are always rand_sep places aparts, as they cycle
X * cyclically through the state information.  (Yes, this does mean we could get
X * away with just one pointer, but the code for random() is more efficient this
X * way).  The pointers are left positioned as they would be from the call
X *			initstate( 1, randtbl, 128 )
X * (The position of the rear pointer, rptr, is really 0 (as explained above
X * in the initialization of randtbl) because the state table pointer is set
X * to point to randtbl[1] (as explained below).
X */
X
Xstatic  long		*fptr			= &randtbl[ SEP_3 + 1 ];
Xstatic  long		*rptr			= &randtbl[ 1 ];
X
X
X
X/*
X * The following things are the pointer to the state information table,
X * the type of the current generator, the degree of the current polynomial
X * being used, and the separation between the two pointers.
X * Note that for efficiency of random(), we remember the first location of
X * the state information, not the zeroeth.  Hence it is valid to access
X * state[-1], which is used to store the type of the R.N.G.
X * Also, we remember the last location, since this is more efficient than
X * indexing every time to find the address of the last element to see if
X * the front and rear pointers have wrapped.
X */
X
Xstatic  long		*state			= &randtbl[ 1 ];
X
Xstatic  int		rand_type		= TYPE_3;
Xstatic  int		rand_deg		= DEG_3;
Xstatic  int		rand_sep		= SEP_3;
X
Xstatic  long		*end_ptr		= &randtbl[ DEG_3 + 1 ];
X
X
X
X/*
X * srandom:
X * Initialize the random number generator based on the given seed.  If the
X * type is the trivial no-state-information type, just remember the seed.
X * Otherwise, initializes state[] based on the given "seed" via a linear
X * congruential generator.  Then, the pointers are set to known locations
X * that are exactly rand_sep places apart.  Lastly, it cycles the state
X * information a given number of times to get rid of any initial dependencies
X * introduced by the L.C.R.N.G.
X * Note that the initialization of randtbl[] for default usage relies on
X * values produced by this routine.
X */
X
Xsrandom( x )
X
X    unsigned		x;
X{
X    	register  int		i, j;
X
X	if(  rand_type  ==  TYPE_0  )  {
X	    state[ 0 ] = x;
X	}
X	else  {
X	    j = 1;
X	    state[ 0 ] = x;
X	    for( i = 1; i < rand_deg; i++ )  {
X		state[i] = 1103515245*state[i - 1] + 12345;
X	    }
X	    fptr = &state[ rand_sep ];
X	    rptr = &state[ 0 ];
X	    for( i = 0; i < 10*rand_deg; i++ )  random();
X	}
X}
X
X
X
X/*
X * initstate:
X * Initialize the state information in the given array of n bytes for
X * future random number generation.  Based on the number of bytes we
X * are given, and the break values for the different R.N.G.'s, we choose
X * the best (largest) one we can and set things up for it.  srandom() is
X * then called to initialize the state information.
X * Note that on return from srandom(), we set state[-1] to be the type
X * multiplexed with the current value of the rear pointer; this is so
X * successive calls to initstate() won't lose this information and will
X * be able to restart with setstate().
X * Note: the first thing we do is save the current state, if any, just like
X * setstate() so that it doesn't matter when initstate is called.
X * Returns a pointer to the old state.
X */
X
Xchar  *
Xinitstate( seed, arg_state, n )
X
X    unsigned		seed;			/* seed for R. N. G. */
X    char		*arg_state;		/* pointer to state array */
X    int			n;			/* # bytes of state info */
X{
X	register  char		*ostate		= (char *)( &state[ -1 ] );
X
X	if(  rand_type  ==  TYPE_0  )  state[ -1 ] = rand_type;
X	else  state[ -1 ] = MAX_TYPES*(rptr - state) + rand_type;
X	if(  n  <  BREAK_1  )  {
X	    if(  n  <  BREAK_0  )  {
X		fprintf( stderr, "initstate: not enough state (%d bytes) with which to do jack; ignored.\n" );
X		return;
X	    }
X	    rand_type = TYPE_0;
X	    rand_deg = DEG_0;
X	    rand_sep = SEP_0;
X	}
X	else  {
X	    if(  n  <  BREAK_2  )  {
X		rand_type = TYPE_1;
X		rand_deg = DEG_1;
X		rand_sep = SEP_1;
X	    }
X	    else  {
X		if(  n  <  BREAK_3  )  {
X		    rand_type = TYPE_2;
X		    rand_deg = DEG_2;
X		    rand_sep = SEP_2;
X		}
X		else  {
X		    if(  n  <  BREAK_4  )  {
X			rand_type = TYPE_3;
X			rand_deg = DEG_3;
X			rand_sep = SEP_3;
X		    }
X		    else  {
X			rand_type = TYPE_4;
X			rand_deg = DEG_4;
X			rand_sep = SEP_4;
X		    }
X		}
X	    }
X	}
X	state = &(  ( (long *)arg_state )[1]  );	/* first location */
X	end_ptr = &state[ rand_deg ];	/* must set end_ptr before srandom */
X	srandom( seed );
X	if(  rand_type  ==  TYPE_0  )  state[ -1 ] = rand_type;
X	else  state[ -1 ] = MAX_TYPES*(rptr - state) + rand_type;
X	return( ostate );
X}
X
X
X
X/*
X * setstate:
X * Restore the state from the given state array.
X * Note: it is important that we also remember the locations of the pointers
X * in the current state information, and restore the locations of the pointers
X * from the old state information.  This is done by multiplexing the pointer
X * location into the zeroeth word of the state information.
X * Note that due to the order in which things are done, it is OK to call
X * setstate() with the same state as the current state.
X * Returns a pointer to the old state information.
X */
X
Xchar  *
Xsetstate( arg_state )
X
X    char		*arg_state;
X{
X	register  long		*new_state	= (long *)arg_state;
X	register  int		type		= new_state[0]%MAX_TYPES;
X	register  int		rear		= new_state[0]/MAX_TYPES;
X	char			*ostate		= (char *)( &state[ -1 ] );
X
X	if(  rand_type  ==  TYPE_0  )  state[ -1 ] = rand_type;
X	else  state[ -1 ] = MAX_TYPES*(rptr - state) + rand_type;
X	switch(  type  )  {
X	    case  TYPE_0:
X	    case  TYPE_1:
X	    case  TYPE_2:
X	    case  TYPE_3:
X	    case  TYPE_4:
X		rand_type = type;
X		rand_deg = degrees[ type ];
X		rand_sep = seps[ type ];
X		break;
X
X	    default:
X		fprintf( stderr, "setstate: state info has been munged; not changed.\n" );
X	}
X	state = &new_state[ 1 ];
X	if(  rand_type  !=  TYPE_0  )  {
X	    rptr = &state[ rear ];
X	    fptr = &state[ (rear + rand_sep)%rand_deg ];
X	}
X	end_ptr = &state[ rand_deg ];		/* set end_ptr too */
X	return( ostate );
X}
X
X
X
X/*
X * random:
X * If we are using the trivial TYPE_0 R.N.G., just do the old linear
X * congruential bit.  Otherwise, we do our fancy trinomial stuff, which is the
X * same in all ther other cases due to all the global variables that have been
X * set up.  The basic operation is to add the number at the rear pointer into
X * the one at the front pointer.  Then both pointers are advanced to the next
X * location cyclically in the table.  The value returned is the sum generated,
X * reduced to 31 bits by throwing away the "least random" low bit.
X * Note: the code takes advantage of the fact that both the front and
X * rear pointers can't wrap on the same call by not testing the rear
X * pointer if the front one has wrapped.
X * Returns a 31-bit random number.
X */
X
Xlong
Xrandom()
X{
X	long		i;
X	
X	if(  rand_type  ==  TYPE_0  )  {
X	    i = state[0] = ( state[0]*1103515245 + 12345 )&0x7fffffff;
X	}
X	else  {
X	    *fptr += *rptr;
X	    i = (*fptr >> 1)&0x7fffffff;	/* chucking least random bit */
X	    if(  ++fptr  >=  end_ptr  )  {
X		fptr = state;
X		++rptr;
X	    }
X	    else  {
X		if(  ++rptr  >=  end_ptr  )  rptr = state;
X	    }
X	}
X	return( i );
X}
END_OF_FILE
if test 11902 -ne `wc -c <'rnd.c'`; then
    echo shar: \"'rnd.c'\" unpacked with wrong size!
fi
# end of 'rnd.c'
fi
if test -f 'regexp.c' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'regexp.c'\"
else
echo shar: Extracting \"'regexp.c'\" \(27786 characters\)
sed "s/^X//" >'regexp.c' <<'END_OF_FILE'
X/*
X * regcomp and regexec -- regsub and regerror are elsewhere
X *
X *	Copyright (c) 1986 by University of Toronto.
X *	Written by Henry Spencer.  Not derived from licensed software.
X *
X *	Permission is granted to anyone to use this software for any
X *	purpose on any computer system, and to redistribute it freely,
X *	subject to the following restrictions:
X *
X *	1. The author is not responsible for the consequences of use of
X *		this software, no matter how awful, even if they arise
X *		from defects in it.
X *
X *	2. The origin of this software must not be misrepresented, either
X *		by explicit claim or by omission.
X *
X *	3. Altered versions must be plainly marked as such, and must not
X *		be misrepresented as being the original software.
X *
X * Beware that some of this code is subtly aware of the way operator
X * precedence is structured in regular expressions.  Serious changes in
X * regular-expression syntax might require a total rethink.
X */
X#ifdef OSK
X#define	sp sp_		/* only for some compilers	*/
X#define STRCSPN
X#define strchr index
X#define STATIC extern
X#endif
X
X#include <stdio.h>
X#include "regexp.h"
X#include "regmagic.h"
X
X/*
X * The "internal use only" fields in regexp.h are present to pass info from
X * compile to execute that permits the execute phase to run lots faster on
X * simple cases.  They are:
X *
X * regstart	char that must begin a match; '\0' if none obvious
X * reganch	is the match anchored (at beginning-of-line only)?
X * regmust	string (pointer into program) that match must include, or NULL
X * regmlen	length of regmust string
X *
X * Regstart and reganch permit very fast decisions on suitable starting points
X * for a match, cutting down the work a lot.  Regmust permits fast rejection
X * of lines that cannot possibly match.  The regmust tests are costly enough
X * that regcomp() supplies a regmust only if the r.e. contains something
X * potentially expensive (at present, the only such thing detected is * or +
X * at the start of the r.e., which can involve a lot of backup).  Regmlen is
X * supplied because the test in regexec() needs it and regcomp() is computing
X * it anyway.
X */
X
X/*
X * Structure for regexp "program".  This is essentially a linear encoding
X * of a nondeterministic finite-state machine (aka syntax charts or
X * "railroad normal form" in parsing technology).  Each node is an opcode
X * plus a "next" pointer, possibly plus an operand.  "Next" pointers of
X * all nodes except BRANCH implement concatenation; a "next" pointer with
X * a BRANCH on both ends of it is connecting two alternatives.  (Here we
X * have one of the subtle syntax dependencies:  an individual BRANCH (as
X * opposed to a collection of them) is never concatenated with anything
X * because of operator precedence.)  The operand of some types of node is
X * a literal string; for others, it is a node leading into a sub-FSM.  In
X * particular, the operand of a BRANCH node is the first node of the branch.
X * (NB this is *not* a tree structure:  the tail of the branch connects
X * to the thing following the set of BRANCHes.)  The opcodes are:
X */
X
X#ifdef OSK
X#ifdef EOL
X#undef EOL
X#endif
X#endif
X
X/* definition	number	opnd?	meaning */
X#define	END	0	/* no	End of program. */
X#define	BOL	1	/* no	Match "" at beginning of line. */
X#define	EOL	2	/* no	Match "" at end of line. */
X#define	ANY	3	/* no	Match any one character. */
X#define	ANYOF	4	/* str	Match any character in this string. */
X#define	ANYBUT	5	/* str	Match any character not in this string. */
X#define	BRANCH	6	/* node	Match this alternative, or the next... */
X#define	BACK	7	/* no	Match "", "next" ptr points backward. */
X#define	EXACTLY	8	/* str	Match this string. */
X#define	NOTHING	9	/* no	Match empty string. */
X#define	STAR	10	/* node	Match this (simple) thing 0 or more times. */
X#define	PLUS	11	/* node	Match this (simple) thing 1 or more times. */
X#define	OPEN	20	/* no	Mark this point in input as start of #n. */
X			/*	OPEN+1 is number 1, etc. */
X#define	CLOSE	30	/* no	Analogous to OPEN. */
X
X/*
X * Opcode notes:
X *
X * BRANCH	The set of branches constituting a single choice are hooked
X *		together with their "next" pointers, since precedence prevents
X *		anything being concatenated to any individual branch.  The
X *		"next" pointer of the last BRANCH in a choice points to the
X *		thing following the whole choice.  This is also where the
X *		final "next" pointer of each individual branch points; each
X *		branch starts with the operand node of a BRANCH node.
X *
X * BACK		Normal "next" pointers all implicitly point forward; BACK
X *		exists to make loop structures possible.
X *
X * STAR,PLUS	'?', and complex '*' and '+', are implemented as circular
X *		BRANCH structures using BACK.  Simple cases (one character
X *		per match) are implemented with STAR and PLUS for speed
X *		and to minimize recursive plunges.
X *
X * OPEN,CLOSE	...are numbered at compile time.
X */
X
X/*
X * A node is one char of opcode followed by two chars of "next" pointer.
X * "Next" pointers are stored as two 8-bit pieces, high order first.  The
X * value is a positive offset from the opcode of the node containing it.
X * An operand, if any, simply follows the node.  (Note that much of the
X * code generation knows about this implicit relationship.)
X *
X * Using two bytes for the "next" pointer is vast overkill for most things,
X * but allows patterns to get big without disasters.
X */
X#define	OP(p)	(*(p))
X#define	NEXT(p)	(((*((p)+1)&0377)<<8) + *((p)+2)&0377)
X#define	OPERAND(p)	((p) + 3)
X
X/*
X * See regmagic.h for one further detail of program structure.
X */
X
X
X/*
X * Utility definitions.
X */
X#ifndef CHARBITS
X#define	UCHARAT(p)	((int)*(unsigned char *)(p))
X#else
X#define	UCHARAT(p)	((int)*(p)&CHARBITS)
X#endif
X
X#define	FAIL(m)	{ regerror(m); return(NULL); }
X#define	ISMULT(c)	((c) == '*' || (c) == '+' || (c) == '?')
X#define	META	"^$.[()|?+*\\"
X
X/*
X * Flags to be passed up and down.
X */
X#define	HASWIDTH	01	/* Known never to match null string. */
X#define	SIMPLE		02	/* Simple enough to be STAR/PLUS operand. */
X#define	SPSTART		04	/* Starts with * or +. */
X#define	WORST		0	/* Worst case. */
X
X/*
X * Global work variables for regcomp().
X */
Xstatic char *regparse;		/* Input-scan pointer. */
Xstatic int regnpar;		/* () count. */
Xstatic char regdummy;
Xstatic char *regcode;		/* Code-emit pointer; &regdummy = don't. */
Xstatic long regsize;		/* Code size. */
X
X/*
X * Forward declarations for regcomp()'s friends.
X */
X#ifndef STATIC
X#define	STATIC	static
X#endif
XSTATIC char *reg();
XSTATIC char *regbranch();
XSTATIC char *regpiece();
XSTATIC char *regatom();
XSTATIC char *regnode();
XSTATIC char *regnext();
XSTATIC void regc();
XSTATIC void reginsert();
XSTATIC void regtail();
XSTATIC void regoptail();
X#ifdef STRCSPN
XSTATIC int strcspn();
X#endif
X
X/*
X - regcomp - compile a regular expression into internal code
X *
X * We can't allocate space until we know how big the compiled form will be,
X * but we can't compile it (and thus know how big it is) until we've got a
X * place to put the code.  So we cheat:  we compile it twice, once with code
X * generation turned off and size counting turned on, and once "for real".
X * This also means that we don't allocate space until we are sure that the
X * thing really will compile successfully, and we never have to move the
X * code and thus invalidate pointers into it.  (Note that it has to be in
X * one piece because free() must be able to free it all.)
X *
X * Beware that the optimization-preparation code in here knows about some
X * of the structure of the compiled regexp.
X */
Xregexp *
Xregcomp(exp)
Xchar *exp;
X{
X	register regexp *r;
X	register char *scan;
X	register char *longest;
X	register int len;
X	int flags;
X	extern char *malloc();
X
X	if (exp == NULL)
X		FAIL("NULL argument");
X
X	/* First pass: determine size, legality. */
X	regparse = exp;
X	regnpar = 1;
X	regsize = 0L;
X	regcode = &regdummy;
X	regc(MAGIC);
X	if (reg(0, &flags) == NULL)
X		return(NULL);
X
X	/* Small enough for pointer-storage convention? */
X	if (regsize >= 32767L)		/* Probably could be 65535L. */
X		FAIL("regexp too big");
X
X	/* Allocate space. */
X	r = (regexp *)malloc(sizeof(regexp) + (unsigned)regsize);
X	if (r == NULL)
X		FAIL("out of space");
X
X	/* Second pass: emit code. */
X	regparse = exp;
X	regnpar = 1;
X	regcode = r->program;
X	regc(MAGIC);
X	if (reg(0, &flags) == NULL)
X		return(NULL);
X
X	/* Dig out information for optimizations. */
X	r->regstart = '\0';	/* Worst-case defaults. */
X	r->reganch = 0;
X	r->regmust = NULL;
X	r->regmlen = 0;
X	scan = r->program+1;			/* First BRANCH. */
X	if (OP(regnext(scan)) == END) {		/* Only one top-level choice. */
X		scan = OPERAND(scan);
X
X		/* Starting-point info. */
X		if (OP(scan) == EXACTLY)
X			r->regstart = *OPERAND(scan);
X		else if (OP(scan) == BOL)
X			r->reganch++;
X
X		/*
X		 * If there's something expensive in the r.e., find the
X		 * longest literal string that must appear and make it the
X		 * regmust.  Resolve ties in favor of later strings, since
X		 * the regstart check works with the beginning of the r.e.
X		 * and avoiding duplication strengthens checking.  Not a
X		 * strong reason, but sufficient in the absence of others.
X		 */
X		if (flags&SPSTART) {
X			longest = NULL;
X			len = 0;
X			for (; scan != NULL; scan = regnext(scan))
X				if (OP(scan) == EXACTLY && strlen(OPERAND(scan)) >= len) {
X					longest = OPERAND(scan);
X					len = strlen(OPERAND(scan));
X				}
X			r->regmust = longest;
X			r->regmlen = len;
X		}
X	}
X
X	return(r);
X}
X
X/*
X - reg - regular expression, i.e. main body or parenthesized thing
X *
X * Caller must absorb opening parenthesis.
X *
X * Combining parenthesis handling with the base level of regular expression
X * is a trifle forced, but the need to tie the tails of the branches to what
X * follows makes it hard to avoid.
X */
Xstatic char *
Xreg(paren, flagp)
Xint paren;			/* Parenthesized? */
Xint *flagp;
X{
X	register char *ret;
X	register char *br;
X	register char *ender;
X	register int parno;
X	int flags;
X
X	*flagp = HASWIDTH;	/* Tentatively. */
X
X	/* Make an OPEN node, if parenthesized. */
X	if (paren) {
X		if (regnpar >= NSUBEXP)
X			FAIL("too many ()");
X		parno = regnpar;
X		regnpar++;
X		ret = regnode(OPEN+parno);
X	} else
X		ret = NULL;
X
X	/* Pick up the branches, linking them together. */
X	br = regbranch(&flags);
X	if (br == NULL)
X		return(NULL);
X	if (ret != NULL)
X		regtail(ret, br);	/* OPEN -> first. */
X	else
X		ret = br;
X	if (!(flags&HASWIDTH))
X		*flagp &= ~HASWIDTH;
X	*flagp |= flags&SPSTART;
X	while (*regparse == '|') {
X		regparse++;
X		br = regbranch(&flags);
X		if (br == NULL)
X			return(NULL);
X		regtail(ret, br);	/* BRANCH -> BRANCH. */
X		if (!(flags&HASWIDTH))
X			*flagp &= ~HASWIDTH;
X		*flagp |= flags&SPSTART;
X	}
X
X	/* Make a closing node, and hook it on the end. */
X	ender = regnode((paren) ? CLOSE+parno : END);	
X	regtail(ret, ender);
X
X	/* Hook the tails of the branches to the closing node. */
X	for (br = ret; br != NULL; br = regnext(br))
X		regoptail(br, ender);
X
X	/* Check for proper termination. */
X	if (paren && *regparse++ != ')') {
X		FAIL("unmatched ()");
X	} else if (!paren && *regparse != '\0') {
X		if (*regparse == ')') {
X			FAIL("unmatched ()");
X		} else
X			FAIL("junk on end");	/* "Can't happen". */
X		/* NOTREACHED */
X	}
X
X	return(ret);
X}
X
X/*
X - regbranch - one alternative of an | operator
X *
X * Implements the concatenation operator.
X */
Xstatic char *
Xregbranch(flagp)
Xint *flagp;
X{
X	register char *ret;
X	register char *chain;
X	register char *latest;
X	int flags;
X
X	*flagp = WORST;		/* Tentatively. */
X
X	ret = regnode(BRANCH);
X	chain = NULL;
X	while (*regparse != '\0' && *regparse != '|' && *regparse != ')') {
X		latest = regpiece(&flags);
X		if (latest == NULL)
X			return(NULL);
X		*flagp |= flags&HASWIDTH;
X		if (chain == NULL)	/* First piece. */
X			*flagp |= flags&SPSTART;
X		else
X			regtail(chain, latest);
X		chain = latest;
X	}
X	if (chain == NULL)	/* Loop ran zero times. */
X		(void) regnode(NOTHING);
X
X	return(ret);
X}
X
X/*
X - regpiece - something followed by possible [*+?]
X *
X * Note that the branching code sequences used for ? and the general cases
X * of * and + are somewhat optimized:  they use the same NOTHING node as
X * both the endmarker for their branch list and the body of the last branch.
X * It might seem that this node could be dispensed with entirely, but the
X * endmarker role is not redundant.
X */
Xstatic char *
Xregpiece(flagp)
Xint *flagp;
X{
X	register char *ret;
X	register char op;
X	register char *next;
X	int flags;
X
X	ret = regatom(&flags);
X	if (ret == NULL)
X		return(NULL);
X
X	op = *regparse;
X	if (!ISMULT(op)) {
X		*flagp = flags;
X		return(ret);
X	}
X
X	if (!(flags&HASWIDTH) && op != '?')
X		FAIL("*+ operand could be empty");
X	*flagp = (op != '+') ? (WORST|SPSTART) : (WORST|HASWIDTH);
X
X	if (op == '*' && (flags&SIMPLE))
X		reginsert(STAR, ret);
X	else if (op == '*') {
X		/* Emit x* as (x&|), where & means "self". */
X		reginsert(BRANCH, ret);			/* Either x */
X		regoptail(ret, regnode(BACK));		/* and loop */
X		regoptail(ret, ret);			/* back */
X		regtail(ret, regnode(BRANCH));		/* or */
X		regtail(ret, regnode(NOTHING));		/* null. */
X	} else if (op == '+' && (flags&SIMPLE))
X		reginsert(PLUS, ret);
X	else if (op == '+') {
X		/* Emit x+ as x(&|), where & means "self". */
X		next = regnode(BRANCH);			/* Either */
X		regtail(ret, next);
X		regtail(regnode(BACK), ret);		/* loop back */
X		regtail(next, regnode(BRANCH));		/* or */
X		regtail(ret, regnode(NOTHING));		/* null. */
X	} else if (op == '?') {
X		/* Emit x? as (x|) */
X		reginsert(BRANCH, ret);			/* Either x */
X		regtail(ret, regnode(BRANCH));		/* or */
X		next = regnode(NOTHING);		/* null. */
X		regtail(ret, next);
X		regoptail(ret, next);
X	}
X	regparse++;
X	if (ISMULT(*regparse))
X		FAIL("nested *?+");
X
X	return(ret);
X}
X
X/*
X - regatom - the lowest level
X *
X * Optimization:  gobbles an entire sequence of ordinary characters so that
X * it can turn them into a single node, which is smaller to store and
X * faster to run.  Backslashed characters are exceptions, each becoming a
X * separate node; the code is simpler that way and it's not worth fixing.
X */
Xstatic char *
Xregatom(flagp)
Xint *flagp;
X{
X	register char *ret;
X	int flags;
X
X	*flagp = WORST;		/* Tentatively. */
X
X	switch (*regparse++) {
X	case '^':
X		ret = regnode(BOL);
X		break;
X	case '$':
X		ret = regnode(EOL);
X		break;
X	case '.':
X		ret = regnode(ANY);
X		*flagp |= HASWIDTH|SIMPLE;
X		break;
X	case '[': {
X			register int class;
X			register int classend;
X
X			if (*regparse == '^') {	/* Complement of range. */
X				ret = regnode(ANYBUT);
X				regparse++;
X			} else
X				ret = regnode(ANYOF);
X			if (*regparse == ']' || *regparse == '-')
X				regc(*regparse++);
X			while (*regparse != '\0' && *regparse != ']') {
X				if (*regparse == '-') {
X					regparse++;
X					if (*regparse == ']' || *regparse == '\0')
X						regc('-');
X					else {
X						class = UCHARAT(regparse-2)+1;
X						classend = UCHARAT(regparse);
X						if (class > classend+1)
X							FAIL("invalid [] range");
X						for (; class <= classend; class++)
X							regc(class);
X						regparse++;
X					}
X				} else
X					regc(*regparse++);
X			}
X			regc('\0');
X			if (*regparse != ']')
X				FAIL("unmatched []");
X			regparse++;
X			*flagp |= HASWIDTH|SIMPLE;
X		}
X		break;
X	case '(':
X		ret = reg(1, &flags);
X		if (ret == NULL)
X			return(NULL);
X		*flagp |= flags&(HASWIDTH|SPSTART);
X		break;
X	case '\0':
X	case '|':
X	case ')':
X		FAIL("internal urp");	/* Supposed to be caught earlier. */
X		break;
X	case '?':
X	case '+':
X	case '*':
X		FAIL("?+* follows nothing");
X		break;
X	case '\\':
X		if (*regparse == '\0')
X			FAIL("trailing \\");
X		ret = regnode(EXACTLY);
X		regc(*regparse++);
X		regc('\0');
X		*flagp |= HASWIDTH|SIMPLE;
X		break;
X	default: {
X			register int len;
X			register char ender;
X
X			regparse--;
X			len = strcspn(regparse, META);
X			if (len <= 0)
X				FAIL("internal disaster");
X			ender = *(regparse+len);
X			if (len > 1 && ISMULT(ender))
X				len--;		/* Back off clear of ?+* operand. */
X			*flagp |= HASWIDTH;
X			if (len == 1)
X				*flagp |= SIMPLE;
X			ret = regnode(EXACTLY);
X			while (len > 0) {
X				regc(*regparse++);
X				len--;
X			}
X			regc('\0');
X		}
X		break;
X	}
X
X	return(ret);
X}
X
X/*
X - regnode - emit a node
X */
Xstatic char *			/* Location. */
Xregnode(op)
Xchar op;
X{
X	register char *ret;
X	register char *ptr;
X
X	ret = regcode;
X	if (ret == &regdummy) {
X		regsize += 3;
X		return(ret);
X	}
X
X	ptr = ret;
X	*ptr++ = op;
X	*ptr++ = '\0';		/* Null "next" pointer. */
X	*ptr++ = '\0';
X	regcode = ptr;
X
X	return(ret);
X}
X
X/*
X - regc - emit (if appropriate) a byte of code
X */
Xstatic void
Xregc(b)
Xchar b;
X{
X	if (regcode != &regdummy)
X		*regcode++ = b;
X	else
X		regsize++;
X}
X
X/*
X - reginsert - insert an operator in front of already-emitted operand
X *
X * Means relocating the operand.
X */
Xstatic void
Xreginsert(op, opnd)
Xchar op;
Xchar *opnd;
X{
X	register char *src;
X	register char *dst;
X	register char *place;
X
X	if (regcode == &regdummy) {
X		regsize += 3;
X		return;
X	}
X
X	src = regcode;
X	regcode += 3;
X	dst = regcode;
X	while (src > opnd)
X		*--dst = *--src;
X
X	place = opnd;		/* Op node, where operand used to be. */
X	*place++ = op;
X	*place++ = '\0';
X	*place++ = '\0';
X}
X
X/*
X - regtail - set the next-pointer at the end of a node chain
X */
Xstatic void
Xregtail(p, val)
Xchar *p;
Xchar *val;
X{
X	register char *scan;
X	register char *temp;
X	register int offset;
X
X	if (p == &regdummy)
X		return;
X
X	/* Find last node. */
X	scan = p;
X	for (;;) {
X		temp = regnext(scan);
X		if (temp == NULL)
X			break;
X		scan = temp;
X	}
X
X	if (OP(scan) == BACK)
X		offset = scan - val;
X	else
X		offset = val - scan;
X	*(scan+1) = (offset>>8)&0377;
X	*(scan+2) = offset&0377;
X}
X
X/*
X - regoptail - regtail on operand of first argument; nop if operandless
X */
Xstatic void
Xregoptail(p, val)
Xchar *p;
Xchar *val;
X{
X	/* "Operandless" and "op != BRANCH" are synonymous in practice. */
X	if (p == NULL || p == &regdummy || OP(p) != BRANCH)
X		return;
X	regtail(OPERAND(p), val);
X}
X
X/*
X * regexec and friends
X */
X
X/*
X * Global work variables for regexec().
X */
Xstatic char *reginput;		/* String-input pointer. */
Xstatic char *regbol;		/* Beginning of input, for ^ check. */
Xstatic char **regstartp;	/* Pointer to startp array. */
Xstatic char **regendp;		/* Ditto for endp. */
X
X/*
X * Forwards.
X */
XSTATIC int regtry();
XSTATIC int regmatch();
XSTATIC int regrepeat();
X
X#ifdef DEBUG
Xint regnarrate = 0;
Xvoid regdump();
XSTATIC char *regprop();
X#endif
X
X/*
X - regexec - match a regexp against a string
X */
Xint
Xregexec(prog, string)
Xregister regexp *prog;
Xregister char *string;
X{
X	register char *s;
X	extern char *strchr();
X
X	/* Be paranoid... */
X	if (prog == NULL || string == NULL) {
X		regerror("NULL parameter");
X		return(0);
X	}
X
X	/* Check validity of program. */
X	if (UCHARAT(prog->program) != MAGIC) {
X		regerror("corrupted program");
X		return(0);
X	}
X
X	/* If there is a "must appear" string, look for it. */
X	if (prog->regmust != NULL) {
X		s = string;
X		while ((s = strchr(s, prog->regmust[0])) != NULL) {
X			if (strncmp(s, prog->regmust, prog->regmlen) == 0)
X				break;	/* Found it. */
X			s++;
X		}
X		if (s == NULL)	/* Not present. */
X			return(0);
X	}
X
X	/* Mark beginning of line for ^ . */
X	regbol = string;
X
X	/* Simplest case:  anchored match need be tried only once. */
X	if (prog->reganch)
X		return(regtry(prog, string));
X
X	/* Messy cases:  unanchored match. */
X	s = string;
X	if (prog->regstart != '\0')
X		/* We know what char it must start with. */
X		while ((s = strchr(s, prog->regstart)) != NULL) {
X			if (regtry(prog, s))
X				return(1);
X			s++;
X		}
X	else
X		/* We don't -- general case. */
X		do {
X			if (regtry(prog, s))
X				return(1);
X		} while (*s++ != '\0');
X
X	/* Failure. */
X	return(0);
X}
X
X/*
X - regtry - try match at specific point
X */
Xstatic int			/* 0 failure, 1 success */
Xregtry(prog, string)
Xregexp *prog;
Xchar *string;
X{
X	register int i;
X	register char **sp;
X	register char **ep;
X
X	reginput = string;
X	regstartp = prog->startp;
X	regendp = prog->endp;
X
X	sp = prog->startp;
X	ep = prog->endp;
X	for (i = NSUBEXP; i > 0; i--) {
X		*sp++ = NULL;
X		*ep++ = NULL;
X	}
X	if (regmatch(prog->program + 1)) {
X		prog->startp[0] = string;
X		prog->endp[0] = reginput;
X		return(1);
X	} else
X		return(0);
X}
X
X/*
X - regmatch - main matching routine
X *
X * Conceptually the strategy is simple:  check to see whether the current
X * node matches, call self recursively to see whether the rest matches,
X * and then act accordingly.  In practice we make some effort to avoid
X * recursion, in particular by going through "ordinary" nodes (that don't
X * need to know whether the rest of the match failed) by a loop instead of
X * by recursion.
X */
Xstatic int			/* 0 failure, 1 success */
Xregmatch(prog)
Xchar *prog;
X{
X	register char *scan;	/* Current node. */
X	char *next;		/* Next node. */
X	extern char *strchr();
X
X	scan = prog;
X#ifdef DEBUG
X	if (scan != NULL && regnarrate)
X		fprintf(stderr, "%s(\n", regprop(scan));
X#endif
X	while (scan != NULL) {
X#ifdef DEBUG
X		if (regnarrate)
X			fprintf(stderr, "%s...\n", regprop(scan));
X#endif
X		next = regnext(scan);
X
X		switch (OP(scan)) {
X		case BOL:
X			if (reginput != regbol)
X				return(0);
X			break;
X		case EOL:
X			if (*reginput != '\0')
X				return(0);
X			break;
X		case ANY:
X			if (*reginput == '\0')
X				return(0);
X			reginput++;
X			break;
X		case EXACTLY: {
X				register int len;
X				register char *opnd;
X
X				opnd = OPERAND(scan);
X				/* Inline the first character, for speed. */
X				if (*opnd != *reginput)
X					return(0);
X				len = strlen(opnd);
X				if (len > 1 && strncmp(opnd, reginput, len) != 0)
X					return(0);
X				reginput += len;
X			}
X			break;
X		case ANYOF:
X			if (*reginput == '\0' || strchr(OPERAND(scan), *reginput) == NULL)
X				return(0);
X			reginput++;
X			break;
X		case ANYBUT:
X			if (*reginput == '\0' || strchr(OPERAND(scan), *reginput) != NULL)
X				return(0);
X			reginput++;
X			break;
X		case NOTHING:
X			break;
X		case BACK:
X			break;
X		case OPEN+1:
X		case OPEN+2:
X		case OPEN+3:
X		case OPEN+4:
X		case OPEN+5:
X		case OPEN+6:
X		case OPEN+7:
X		case OPEN+8:
X		case OPEN+9: {
X				register int no;
X				register char *save;
X
X				no = OP(scan) - OPEN;
X				save = reginput;
X
X				if (regmatch(next)) {
X					/*
X					 * Don't set startp if some later
X					 * invocation of the same parentheses
X					 * already has.
X					 */
X					if (regstartp[no] == NULL)
X						regstartp[no] = save;
X					return(1);
X				} else
X					return(0);
X			}
X			break;
X		case CLOSE+1:
X		case CLOSE+2:
X		case CLOSE+3:
X		case CLOSE+4:
X		case CLOSE+5:
X		case CLOSE+6:
X		case CLOSE+7:
X		case CLOSE+8:
X		case CLOSE+9: {
X				register int no;
X				register char *save;
X
X				no = OP(scan) - CLOSE;
X				save = reginput;
X
X				if (regmatch(next)) {
X					/*
X					 * Don't set endp if some later
X					 * invocation of the same parentheses
X					 * already has.
X					 */
X					if (regendp[no] == NULL)
X						regendp[no] = save;
X					return(1);
X				} else
X					return(0);
X			}
X			break;
X		case BRANCH: {
X				register char *save;
X
X				if (OP(next) != BRANCH)		/* No choice. */
X					next = OPERAND(scan);	/* Avoid recursion. */
X				else {
X					do {
X						save = reginput;
X						if (regmatch(OPERAND(scan)))
X							return(1);
X						reginput = save;
X						scan = regnext(scan);
X					} while (scan != NULL && OP(scan) == BRANCH);
X					return(0);
X					/* NOTREACHED */
X				}
X			}
X			break;
X		case STAR:
X		case PLUS: {
X				register char nextch;
X				register int no;
X				register char *save;
X				register int min;
X
X				/*
X				 * Lookahead to avoid useless match attempts
X				 * when we know what character comes next.
X				 */
X				nextch = '\0';
X				if (OP(next) == EXACTLY)
X					nextch = *OPERAND(next);
X				min = (OP(scan) == STAR) ? 0 : 1;
X				save = reginput;
X				no = regrepeat(OPERAND(scan));
X				while (no >= min) {
X					/* If it could work, try it. */
X					if (nextch == '\0' || *reginput == nextch)
X						if (regmatch(next))
X							return(1);
X					/* Couldn't or didn't -- back up. */
X					no--;
X					reginput = save + no;
X				}
X				return(0);
X			}
X			break;
X		case END:
X			return(1);	/* Success! */
X			break;
X		default:
X			regerror("memory corruption");
X			return(0);
X			break;
X		}
X
X		scan = next;
X	}
X
X	/*
X	 * We get here only if there's trouble -- normally "case END" is
X	 * the terminating point.
X	 */
X	regerror("corrupted pointers");
X	return(0);
X}
X
X/*
X - regrepeat - repeatedly match something simple, report how many
X */
Xstatic int
Xregrepeat(p)
Xchar *p;
X{
X	register int count = 0;
X	register char *scan;
X	register char *opnd;
X
X	scan = reginput;
X	opnd = OPERAND(p);
X	switch (OP(p)) {
X	case ANY:
X		count = strlen(scan);
X		scan += count;
X		break;
X	case EXACTLY:
X		while (*opnd == *scan) {
X			count++;
X			scan++;
X		}
X		break;
X	case ANYOF:
X		while (*scan != '\0' && strchr(opnd, *scan) != NULL) {
X			count++;
X			scan++;
X		}
X		break;
X	case ANYBUT:
X		while (*scan != '\0' && strchr(opnd, *scan) == NULL) {
X			count++;
X			scan++;
X		}
X		break;
X	default:		/* Oh dear.  Called inappropriately. */
X		regerror("internal foulup");
X		count = 0;	/* Best compromise. */
X		break;
X	}
X	reginput = scan;
X
X	return(count);
X}
X
X/*
X - regnext - dig the "next" pointer out of a node
X */
Xstatic char *
Xregnext(p)
Xregister char *p;
X{
X	register int offset;
X
X	if (p == &regdummy)
X		return(NULL);
X
X	offset = NEXT(p);
X	if (offset == 0)
X		return(NULL);
X
X	if (OP(p) == BACK)
X		return(p-offset);
X	else
X		return(p+offset);
X}
X
X#ifdef DEBUG
X
XSTATIC char *regprop();
X
X/*
X - regdump - dump a regexp onto stdout in vaguely comprehensible form
X */
Xvoid
Xregdump(r)
Xregexp *r;
X{
X	register char *s;
X	register char op = EXACTLY;	/* Arbitrary non-END op. */
X	register char *next;
X	extern char *strchr();
X
X
X	s = r->program + 1;
X	while (op != END) {	/* While that wasn't END last time... */
X		op = OP(s);
X		printf("%2d%s", s-r->program, regprop(s));	/* Where, what. */
X		next = regnext(s);
X		if (next == NULL)		/* Next ptr. */
X			printf("(0)");
X		else 
X			printf("(%d)", (s-r->program)+(next-s));
X		s += 3;
X		if (op == ANYOF || op == ANYBUT || op == EXACTLY) {
X			/* Literal string, where present. */
X			while (*s != '\0') {
X				putchar(*s);
X				s++;
X			}
X			s++;
X		}
X		putchar('\n');
X	}
X
X	/* Header fields of interest. */
X	if (r->regstart != '\0')
X		printf("start `%c' ", r->regstart);
X	if (r->reganch)
X		printf("anchored ");
X	if (r->regmust != NULL)
X		printf("must have \"%s\"", r->regmust);
X	printf("\n");
X}
X
X/*
X - regprop - printable representation of opcode
X */
Xstatic char *
Xregprop(op)
Xchar *op;
X{
X	register char *p;
X	static char buf[50];
X
X	(void) strcpy(buf, ":");
X
X	switch (OP(op)) {
X	case BOL:
X		p = "BOL";
X		break;
X	case EOL:
X		p = "EOL";
X		break;
X	case ANY:
X		p = "ANY";
X		break;
X	case ANYOF:
X		p = "ANYOF";
X		break;
X	case ANYBUT:
X		p = "ANYBUT";
X		break;
X	case BRANCH:
X		p = "BRANCH";
X		break;
X	case EXACTLY:
X		p = "EXACTLY";
X		break;
X	case NOTHING:
X		p = "NOTHING";
X		break;
X	case BACK:
X		p = "BACK";
X		break;
X	case END:
X		p = "END";
X		break;
X	case OPEN+1:
X	case OPEN+2:
X	case OPEN+3:
X	case OPEN+4:
X	case OPEN+5:
X	case OPEN+6:
X	case OPEN+7:
X	case OPEN+8:
X	case OPEN+9:
X		sprintf(buf+strlen(buf), "OPEN%d", OP(op)-OPEN);
X		p = NULL;
X		break;
X	case CLOSE+1:
X	case CLOSE+2:
X	case CLOSE+3:
X	case CLOSE+4:
X	case CLOSE+5:
X	case CLOSE+6:
X	case CLOSE+7:
X	case CLOSE+8:
X	case CLOSE+9:
X		sprintf(buf+strlen(buf), "CLOSE%d", OP(op)-CLOSE);
X		p = NULL;
X		break;
X	case STAR:
X		p = "STAR";
X		break;
X	case PLUS:
X		p = "PLUS";
X		break;
X	default:
X		regerror("corrupted opcode");
X		break;
X	}
X	if (p != NULL)
X		(void) strcat(buf, p);
X	return(buf);
X}
X#endif
X
X/*
X * The following is provided for those people who do not have strcspn() in
X * their C libraries.  They should get off their butts and do something
X * about it; at least one public-domain implementation of those (highly
X * useful) string routines has been published on Usenet.
X */
X#ifdef STRCSPN
X/*
X * strcspn - find length of initial segment of s1 consisting entirely
X * of characters not from s2
X */
X
Xstatic int
Xstrcspn(s1, s2)
Xchar *s1;
Xchar *s2;
X{
X	register char *scan1;
X	register char *scan2;
X	register int count;
X
X	count = 0;
X	for (scan1 = s1; *scan1 != '\0'; scan1++) {
X		for (scan2 = s2; *scan2 != '\0';)	/* ++ moved down. */
X			if (*scan1 == *scan2++)
X				return(count);
X		count++;
X	}
X	return(count);
X}
X#endif
END_OF_FILE
if test 27786 -ne `wc -c <'regexp.c'`; then
    echo shar: \"'regexp.c'\" unpacked with wrong size!
fi
# end of 'regexp.c'
fi
echo shar: End of archive 5 \(of 5\).
cp /dev/null ark5isdone
MISSING=""
for I in 1 2 3 4 5 ; do
    if test ! -f ark${I}isdone ; then
	MISSING="${MISSING} ${I}"
    fi
done
if test "${MISSING}" = "" ; then
    echo You have unpacked all 5 archives.
    rm -f ark[1-9]isdone
else
    echo You still need to unpack the following archives:
    echo "        " ${MISSING}
fi
##  End of shell archive.
exit 0
-- 
  |  Wolfgang Ocker          |  ocker@lan.informatik.tu-muenchen.dbp.de  |
  |  Lochhauserstr. 35a      |      pyramid!tmpmbx!recco!weo (home)      |
  |  D-8039 Puchheim         |     Technische Universitaet Muenchen      |
  |  Voice: +49 89 80 77 02  |          Huh, What? Where am I?           |