ocker@lan.informatik.tu-muenchen.dbp.de (Wolfgang Ocker) (10/20/88)
#! /bin/sh
# This is a shell archive. Remove anything before this line, then unpack
# it by saving it into a file and typing "sh file". To overwrite existing
# files, type "sh file -c". You can also feed this as standard input via
# unshar, or by typing "sh <file", e.g.. If this archive is complete, you
# will see the following message at the end:
# "End of archive 5 (of 5)."
# Contents: info.c rnd.c regexp.c
# Wrapped by weo@recsys on Tue Oct 11 14:24:50 1988
PATH=/bin:/usr/bin:/usr/ucb ; export PATH
if test -f 'info.c' -a "${1}" != "-c" ; then
echo shar: Will not clobber existing file \"'info.c'\"
else
echo shar: Extracting \"'info.c'\" \(10915 characters\)
sed "s/^X//" >'info.c' <<'END_OF_FILE'
X/*
X * SYSINFO Library
X *
X * Copyrights (c) 1988 by reccoware systems, Wolfgang Ocker, Puchheim
X *
X *
X *
X * IMPORTANT NOTICE
X * =====================================================================
X *
X * I would like to establish the SYSINFO concept as a STANDARD for
X * OS-9/68000. So please DON'T CHANGE ANYTHING. Please send any bug
X * reports or suggestions to
X *
X *
X * Wolfgang Ocker
X * Lochhauserstrasse 35a
X * D-8039 Puchheim
X * Tel. +49 89 / 80 77 02
X *
X * e-mail: weo@recco (...!pyramid!tmpmbx!recco!weo)
X * weo@altger (...!altnet!altger!weo)
X * ocker@lan.informatik.tu-muenchen.dbp.de
X *
X *
X * I will maintain the SYSINFO package and keep it (upward) compatible!
X * You may not distribute any modified versions, or programs which rely
X * on a modified version.
X *
X * If you don't like SYSINFO, don't use it!
X */
X
X/*
X * Revision history
X *
X * # Date Comments By
X * -------------------------------------------------------------------- ---
X * 00 09/16/88 Prepared for net release weo
X * 01 10/06/88 Corrected modlink parameters weo
X *
X */
X
X#define PATCHLEVEL 1
X
X#include <stdio.h>
X#include <module.h>
X#include <strings.h>
X#include <procid.h>
X#include <errno.h>
X#include "infomod.h"
X
Xextern int errno;
Xstatic char *Copyright = "Copyrights (c) 1988 by reccoware systems puchheim";
X
X/*
X * l i n k _ i n f o _ m o d
X *
X * Link to SYSINFO data module
X */
Xstatic INFO *
Xlink_info_mod()
X{
X register mod_exec *info_module;
X
X if ((info_module = (mod_exec *) modlink(INFO_MODULE_NAME,
X mktypelang(MT_DATA, ML_ANY))) ==
X (mod_exec *) -1)
X return(NULL); /* can't link */
X
X return((INFO *) (((char *) info_module) + info_module->_mexec));
X}
X
X/*
X * u n l i n k _ i n f o _ m o d
X *
X * unlink from SYSINFO data module
X */
Xstatic void
Xunlink_info_mod()
X{
X (void) munload(INFO_MODULE_NAME, 0x0400);
X}
X
X/*
X * i n f o _ e n t r y
X *
X * Get pointer to an entry within the SYSINFO data module. Needs
X * name of the entry (case sensitiv) and its type.
X */
Xstatic ENTRY *
Xinfo_entry(name, type)
X register char *name;
X register int type;
X{
X register INFO *info;
X register int i;
X
X if ((info = link_info_mod()) == NULL) /* Link to data module */
X return(NULL);
X
X /*
X * Check revision (for compatiblity reasons)
X */
X if (info->rev != REVISION) {
X unlink_info_mod();
X return(NULL);
X }
X
X for (i = 0; i < info->num; i++) /* search entry by name */
X if (!strcmp(info->entry[i].name, name) &&
X (info->entry[i].type == type)) /* desired type? */
X return(&(info->entry[i])); /* all ok, return pointer */
X
X unlink_info_mod();
X errno = E_PNNF;
X return(NULL);
X}
X
X/*
X * i n f o _ t y p e
X *
X * Determine type of SYSINFO entry. Needs only the name of the entry.
X */
Xint
Xinfo_type(name)
X char *name;
X{
X register INFO *info;
X register int i;
X register int type;
X
X if ((info = link_info_mod()) == NULL) /* Link to data module */
X return(NULL);
X
X for (i = 0; i < info->num; i++) /* Search entry */
X if (!strcmp(info->entry[i].name, name)) {
X type = info->entry[i].type;
X unlink_info_mod();
X return(type); /* found, return type */
X }
X
X unlink_info_mod();
X errno = E_PNNF;
X return(FAILED);
X}
X
X/*
X * i n f o _ s t r
X *
X * Get a string from SYSINFO. Needs name, buffer, and max. length.
X */
Xchar *
Xinfo_str(name, str, len)
X register char *name;
X register char *str;
X register int len;
X{
X register ENTRY *entry;
X
X /*
X * Get a pointer to the desired entry
X */
X if ((entry = info_entry(name, T_STRING)) == NULL)
X return(NULL); /* Not found */
X
X (void) strncpy(str, entry->data, len-1); /* Copy */
X str[len-1] = '\0';
X unlink_info_mod();
X return(str);
X}
X
X/*
X * i n f o _ n u m
X *
X * Get number from SYSINFO
X */
Xint
Xinfo_num(name)
X register char *name;
X{
X register ENTRY *entry;
X
X /*
X * Get a pointer to the entry
X */
X if ((entry = info_entry(name, T_NUM)) == NULL)
X return(FAILED);
X
X unlink_info_mod();
X return(*((int *) entry->data));
X}
X
X/*
X * i n f o _ i s _ l o c k e d
X *
X * Check, if a lock entry is locked. Needs name.
X */
Xint
Xinfo_is_locked(name)
X register char *name;
X{
X int EvID;
X int status;
X procid procdesc;
X register LOCK *lock;
X register ENTRY *entry;
X
X /*
X * Remove a leading slash ("/t7" is equal to "t7")
X */
X if (name[0] == '/')
X name++;
X
X /*
X * Get pointer to entry
X */
X if ((entry = info_entry(name, T_LOCK)) == NULL)
X return(FAILED);
X
X /*
X * Link to the SYSINFO event
X */
X if ((EvID = _ev_link(INFO_EVENT_NAME)) == -1) {
X unlink_info_mod();
X return(FAILED);
X }
X
X /*
X * Wait, until we can access the entry.
X * We should check for a timeout here ... (perhaps alarms?)
X */
X while (_ev_wait(EvID, 0, 0) != 0) ;
X
X /*
X * Now we can access the entry
X */
X lock = (LOCK *) entry->data;
X status = lock->status; /* Get status */
X
X if (status == ST_LOCKED) /* Locked? */
X if (lock->pid == 0) /* Process ID? */
X status = ST_FREE; /* NOT LOCKED! */
X else
X /*
X * Now we have to check, whether the existing process
X * still exists. We do this by checking the PID and the
X * start time of the locking process
X */
X if (_get_process_desc(lock->pid, sizeof(procdesc),
X &procdesc) == -1 ||
X lock->timbeg != procdesc._timbeg ||
X lock->datbeg != procdesc._datbeg)
X status = ST_FREE; /* Meanwhile, the process has died! */
X
X (void) _ev_signal(EvID, 0);
X _ev_unlink(EvID);
X unlink_info_mod();
X
X return(status == ST_FREE ? OK : FAILED);
X}
X
X/*
X * i n f o _ l o c k
X *
X * Lock a SYSINFO entry
X */
Xint
Xinfo_lock(name, signal)
X register char *name;
X int signal;
X{
X int EvID;
X register LOCK *lock;
X procid procdesc;
X register int timeout;
X register ENTRY *entry;
X
X if (name[0] == '/')
X name++;
X
X if ((entry = info_entry(name, T_LOCK)) == NULL)
X return(FAILED);
X
X if ((EvID = _ev_link(INFO_EVENT_NAME)) == -1) {
X unlink_info_mod();
X return(FAILED);
X }
X
X while (_ev_wait(EvID, 0, 0) != 0) ;
X
X /*
X * Now we can access the entry
X */
X lock = (LOCK *) entry->data;
X
X if (lock->status == ST_LOCKED) { /* locked? */
X if (lock->pid != 0) { /* Process ID given? */
X timeout = 0;
X while (lock->status == ST_LOCKED &&
X _get_process_desc(lock->pid, sizeof(procdesc),
X &procdesc) != -1 &&
X lock->timbeg == procdesc._timbeg &&
X lock->datbeg == procdesc._datbeg) {
X
X if (timeout++ > 20) { /* Timeout? */
X (void) _ev_signal(EvID, 0);
X _ev_unlink(EvID);
X unlink_info_mod();
X return(FAILED);
X }
X
X if (lock->signal != -1) /* May we send a signal to the */
X /* locking process? */
X (void) kill(lock->pid, lock->signal);
X
X (void) _ev_signal(EvID, 0); /* Now others may access */
X (void) sleep(5); /* Wait a bit ... */
X while (_ev_wait(EvID, 0, 0) != 0) ;
X }
X }
X }
X
X lock->status = ST_LOCKED;
X lock->timestamp = time(NULL);
X lock->pid = getpid();
X lock->signal = signal; /* A process which want lock may send us */
X /* this signal */
X
X if (_get_process_desc(lock->pid, sizeof(procdesc), &procdesc) != -1) {
X lock->timbeg = procdesc._timbeg; /* Our start time */
X lock->datbeg = procdesc._datbeg;
X }
X else {
X lock->timbeg = 0;
X lock->datbeg = 0;
X }
X
X (void) _ev_signal(EvID, 0);
X _ev_unlink(EvID);
X unlink_info_mod();
X return(OK);
X}
X
X/*
X * i n f o _ u n l o c k
X *
X * Unlock
X */
Xint
Xinfo_unlock(name)
X register char *name;
X{
X int EvID;
X procid procdesc;
X register LOCK *lock;
X register ENTRY *entry;
X
X if (name[0] == '/')
X name++;
X
X if ((entry = info_entry(name, T_LOCK)) == NULL)
X return(FAILED);
X
X if ((EvID = _ev_link(INFO_EVENT_NAME)) == -1) {
X unlink_info_mod();
X return(FAILED);
X }
X
X while (_ev_wait(EvID, 0, 0) != 0);
X
X lock = (LOCK *) entry->data;
X
X if (lock->status == ST_LOCKED && lock->pid == getpid() &&
X _get_process_desc(lock->pid, sizeof(procdesc), &procdesc) != -1 &&
X lock->timbeg == procdesc._timbeg &&
X lock->datbeg == procdesc._datbeg) /* IS it "our" lock? */
X lock->status = ST_FREE; /* Unlock */
X
X (void) _ev_signal(EvID, 0);
X _ev_unlink(EvID);
X unlink_info_mod();
X return(OK);
X}
X
X/*
X * i n f o _ c h a n g e
X *
X * Change signal number of a lock
X */
Xint
Xinfo_change(name, signal)
X register char *name;
X int signal;
X{
X int err;
X int EvID;
X register LOCK *lock;
X procid procdesc;
X register ENTRY *entry;
X
X if (name[0] == '/')
X name++;
X
X if ((entry = info_entry(name, T_LOCK)) == NULL)
X return(FAILED);
X
X if ((EvID = _ev_link(INFO_EVENT_NAME)) == -1) {
X unlink_info_mod();
X return(FAILED);
X }
X
X while (_ev_wait(EvID, 0, 0) != 0) ;
X
X lock = (LOCK *) entry->data;
X
X err = FAILED;
X
X if (lock->status == ST_LOCKED && lock->pid == getpid() &&
X _get_process_desc(lock->pid, sizeof(procdesc), &procdesc) != -1 &&
X lock->timbeg == procdesc._timbeg &&
X lock->datbeg == procdesc._datbeg) { /* Locking proc. still existing? */
X err = OK;
X lock->signal = signal; /* new signal code */
X }
X
X (void) _ev_signal(EvID, 0);
X _ev_unlink(EvID);
X unlink_info_mod();
X return(err);
X}
X
X/*
X * i n f o _ s i g n a l
X *
X * Send a signal to a locking process
X */
Xint
Xinfo_signal(name)
X register char *name;
X{
X int err;
X int EvID;
X register LOCK *lock;
X procid procdesc;
X register ENTRY *entry;
X
X if (name[0] == '/')
X name++;
X
X if ((entry = info_entry(name, T_LOCK)) == NULL)
X return(FAILED);
X
X if ((EvID = _ev_link(INFO_EVENT_NAME)) == -1) {
X unlink_info_mod();
X return(FAILED);
X }
X
X while (_ev_wait(EvID, 0, 0) != 0) ;
X
X lock = (LOCK *) entry->data;
X
X err = FAILED;
X
X if (lock->status == ST_LOCKED &&
X _get_process_desc(lock->pid, sizeof(procdesc), &procdesc) != -1 &&
X lock->timbeg == procdesc._timbeg &&
X lock->datbeg == procdesc._datbeg) { /* Locking proc. still existing? */
X
X if (lock->signal != -1) { /* May we send a signal? */
X err = OK;
X (void) kill(lock->pid, lock->signal); /* Yes, "kill" him! */
X }
X }
X
X (void) _ev_signal(EvID, 0);
X _ev_unlink(EvID);
X unlink_info_mod();
X return(err);
X}
X
END_OF_FILE
if test 10915 -ne `wc -c <'info.c'`; then
echo shar: \"'info.c'\" unpacked with wrong size!
fi
# end of 'info.c'
fi
if test -f 'rnd.c' -a "${1}" != "-c" ; then
echo shar: Will not clobber existing file \"'rnd.c'\"
else
echo shar: Extracting \"'rnd.c'\" \(11902 characters\)
sed "s/^X//" >'rnd.c' <<'END_OF_FILE'
X#ifndef lint
X/* static char sccsid[] = "@(#)random.c 4.2 (Berkeley) 83/01/02"; */
X#endif
X
X#include <stdio.h>
X
X/*
X * random.c:
X * An improved random number generation package. In addition to the standard
X * rand()/srand() like interface, this package also has a special state info
X * interface. The initstate() routine is called with a seed, an array of
X * bytes, and a count of how many bytes are being passed in; this array is then
X * initialized to contain information for random number generation with that
X * much state information. Good sizes for the amount of state information are
X * 32, 64, 128, and 256 bytes. The state can be switched by calling the
X * setstate() routine with the same array as was initiallized with initstate().
X * By default, the package runs with 128 bytes of state information and
X * generates far better random numbers than a linear congruential generator.
X * If the amount of state information is less than 32 bytes, a simple linear
X * congruential R.N.G. is used.
X * Internally, the state information is treated as an array of longs; the
X * zeroeth element of the array is the type of R.N.G. being used (small
X * integer); the remainder of the array is the state information for the
X * R.N.G. Thus, 32 bytes of state information will give 7 longs worth of
X * state information, which will allow a degree seven polynomial. (Note: the
X * zeroeth word of state information also has some other information stored
X * in it -- see setstate() for details).
X * The random number generation technique is a linear feedback shift register
X * approach, employing trinomials (since there are fewer terms to sum up that
X * way). In this approach, the least significant bit of all the numbers in
X * the state table will act as a linear feedback shift register, and will have
X * period 2^deg - 1 (where deg is the degree of the polynomial being used,
X * assuming that the polynomial is irreducible and primitive). The higher
X * order bits will have longer periods, since their values are also influenced
X * by pseudo-random carries out of the lower bits. The total period of the
X * generator is approximately deg*(2**deg - 1); thus doubling the amount of
X * state information has a vast influence on the period of the generator.
X * Note: the deg*(2**deg - 1) is an approximation only good for large deg,
X * when the period of the shift register is the dominant factor. With deg
X * equal to seven, the period is actually much longer than the 7*(2**7 - 1)
X * predicted by this formula.
X */
X
X
X
X/*
X * For each of the currently supported random number generators, we have a
X * break value on the amount of state information (you need at least this
X * many bytes of state info to support this random number generator), a degree
X * for the polynomial (actually a trinomial) that the R.N.G. is based on, and
X * the separation between the two lower order coefficients of the trinomial.
X */
X
X#define TYPE_0 0 /* linear congruential */
X#define BREAK_0 8
X#define DEG_0 0
X#define SEP_0 0
X
X#define TYPE_1 1 /* x**7 + x**3 + 1 */
X#define BREAK_1 32
X#define DEG_1 7
X#define SEP_1 3
X
X#define TYPE_2 2 /* x**15 + x + 1 */
X#define BREAK_2 64
X#define DEG_2 15
X#define SEP_2 1
X
X#define TYPE_3 3 /* x**31 + x**3 + 1 */
X#define BREAK_3 128
X#define DEG_3 31
X#define SEP_3 3
X
X#define TYPE_4 4 /* x**63 + x + 1 */
X#define BREAK_4 256
X#define DEG_4 63
X#define SEP_4 1
X
X
X/*
X * Array versions of the above information to make code run faster -- relies
X * on fact that TYPE_i == i.
X */
X
X#define MAX_TYPES 5 /* max number of types above */
X
Xstatic int degrees[ MAX_TYPES ] = { DEG_0, DEG_1, DEG_2,
X DEG_3, DEG_4 };
X
Xstatic int seps[ MAX_TYPES ] = { SEP_0, SEP_1, SEP_2,
X SEP_3, SEP_4 };
X
X
X
X/*
X * Initially, everything is set up as if from :
X * initstate( 1, &randtbl, 128 );
X * Note that this initialization takes advantage of the fact that srandom()
X * advances the front and rear pointers 10*rand_deg times, and hence the
X * rear pointer which starts at 0 will also end up at zero; thus the zeroeth
X * element of the state information, which contains info about the current
X * position of the rear pointer is just
X * MAX_TYPES*(rptr - state) + TYPE_3 == TYPE_3.
X */
X
Xstatic long randtbl[ DEG_3 + 1 ] = { TYPE_3,
X 0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342,
X 0xde3b81e0, 0xdf0a6fb5, 0xf103bc02, 0x48f340fb,
X 0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd,
X 0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86,
X 0xda672e2a, 0x1588ca88, 0xe369735d, 0x904f35f7,
X 0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc,
X 0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b,
X 0xf5ad9d0e, 0x8999220b, 0x27fb47b9 };
X
X/*
X * fptr and rptr are two pointers into the state info, a front and a rear
X * pointer. These two pointers are always rand_sep places aparts, as they cycle
X * cyclically through the state information. (Yes, this does mean we could get
X * away with just one pointer, but the code for random() is more efficient this
X * way). The pointers are left positioned as they would be from the call
X * initstate( 1, randtbl, 128 )
X * (The position of the rear pointer, rptr, is really 0 (as explained above
X * in the initialization of randtbl) because the state table pointer is set
X * to point to randtbl[1] (as explained below).
X */
X
Xstatic long *fptr = &randtbl[ SEP_3 + 1 ];
Xstatic long *rptr = &randtbl[ 1 ];
X
X
X
X/*
X * The following things are the pointer to the state information table,
X * the type of the current generator, the degree of the current polynomial
X * being used, and the separation between the two pointers.
X * Note that for efficiency of random(), we remember the first location of
X * the state information, not the zeroeth. Hence it is valid to access
X * state[-1], which is used to store the type of the R.N.G.
X * Also, we remember the last location, since this is more efficient than
X * indexing every time to find the address of the last element to see if
X * the front and rear pointers have wrapped.
X */
X
Xstatic long *state = &randtbl[ 1 ];
X
Xstatic int rand_type = TYPE_3;
Xstatic int rand_deg = DEG_3;
Xstatic int rand_sep = SEP_3;
X
Xstatic long *end_ptr = &randtbl[ DEG_3 + 1 ];
X
X
X
X/*
X * srandom:
X * Initialize the random number generator based on the given seed. If the
X * type is the trivial no-state-information type, just remember the seed.
X * Otherwise, initializes state[] based on the given "seed" via a linear
X * congruential generator. Then, the pointers are set to known locations
X * that are exactly rand_sep places apart. Lastly, it cycles the state
X * information a given number of times to get rid of any initial dependencies
X * introduced by the L.C.R.N.G.
X * Note that the initialization of randtbl[] for default usage relies on
X * values produced by this routine.
X */
X
Xsrandom( x )
X
X unsigned x;
X{
X register int i, j;
X
X if( rand_type == TYPE_0 ) {
X state[ 0 ] = x;
X }
X else {
X j = 1;
X state[ 0 ] = x;
X for( i = 1; i < rand_deg; i++ ) {
X state[i] = 1103515245*state[i - 1] + 12345;
X }
X fptr = &state[ rand_sep ];
X rptr = &state[ 0 ];
X for( i = 0; i < 10*rand_deg; i++ ) random();
X }
X}
X
X
X
X/*
X * initstate:
X * Initialize the state information in the given array of n bytes for
X * future random number generation. Based on the number of bytes we
X * are given, and the break values for the different R.N.G.'s, we choose
X * the best (largest) one we can and set things up for it. srandom() is
X * then called to initialize the state information.
X * Note that on return from srandom(), we set state[-1] to be the type
X * multiplexed with the current value of the rear pointer; this is so
X * successive calls to initstate() won't lose this information and will
X * be able to restart with setstate().
X * Note: the first thing we do is save the current state, if any, just like
X * setstate() so that it doesn't matter when initstate is called.
X * Returns a pointer to the old state.
X */
X
Xchar *
Xinitstate( seed, arg_state, n )
X
X unsigned seed; /* seed for R. N. G. */
X char *arg_state; /* pointer to state array */
X int n; /* # bytes of state info */
X{
X register char *ostate = (char *)( &state[ -1 ] );
X
X if( rand_type == TYPE_0 ) state[ -1 ] = rand_type;
X else state[ -1 ] = MAX_TYPES*(rptr - state) + rand_type;
X if( n < BREAK_1 ) {
X if( n < BREAK_0 ) {
X fprintf( stderr, "initstate: not enough state (%d bytes) with which to do jack; ignored.\n" );
X return;
X }
X rand_type = TYPE_0;
X rand_deg = DEG_0;
X rand_sep = SEP_0;
X }
X else {
X if( n < BREAK_2 ) {
X rand_type = TYPE_1;
X rand_deg = DEG_1;
X rand_sep = SEP_1;
X }
X else {
X if( n < BREAK_3 ) {
X rand_type = TYPE_2;
X rand_deg = DEG_2;
X rand_sep = SEP_2;
X }
X else {
X if( n < BREAK_4 ) {
X rand_type = TYPE_3;
X rand_deg = DEG_3;
X rand_sep = SEP_3;
X }
X else {
X rand_type = TYPE_4;
X rand_deg = DEG_4;
X rand_sep = SEP_4;
X }
X }
X }
X }
X state = &( ( (long *)arg_state )[1] ); /* first location */
X end_ptr = &state[ rand_deg ]; /* must set end_ptr before srandom */
X srandom( seed );
X if( rand_type == TYPE_0 ) state[ -1 ] = rand_type;
X else state[ -1 ] = MAX_TYPES*(rptr - state) + rand_type;
X return( ostate );
X}
X
X
X
X/*
X * setstate:
X * Restore the state from the given state array.
X * Note: it is important that we also remember the locations of the pointers
X * in the current state information, and restore the locations of the pointers
X * from the old state information. This is done by multiplexing the pointer
X * location into the zeroeth word of the state information.
X * Note that due to the order in which things are done, it is OK to call
X * setstate() with the same state as the current state.
X * Returns a pointer to the old state information.
X */
X
Xchar *
Xsetstate( arg_state )
X
X char *arg_state;
X{
X register long *new_state = (long *)arg_state;
X register int type = new_state[0]%MAX_TYPES;
X register int rear = new_state[0]/MAX_TYPES;
X char *ostate = (char *)( &state[ -1 ] );
X
X if( rand_type == TYPE_0 ) state[ -1 ] = rand_type;
X else state[ -1 ] = MAX_TYPES*(rptr - state) + rand_type;
X switch( type ) {
X case TYPE_0:
X case TYPE_1:
X case TYPE_2:
X case TYPE_3:
X case TYPE_4:
X rand_type = type;
X rand_deg = degrees[ type ];
X rand_sep = seps[ type ];
X break;
X
X default:
X fprintf( stderr, "setstate: state info has been munged; not changed.\n" );
X }
X state = &new_state[ 1 ];
X if( rand_type != TYPE_0 ) {
X rptr = &state[ rear ];
X fptr = &state[ (rear + rand_sep)%rand_deg ];
X }
X end_ptr = &state[ rand_deg ]; /* set end_ptr too */
X return( ostate );
X}
X
X
X
X/*
X * random:
X * If we are using the trivial TYPE_0 R.N.G., just do the old linear
X * congruential bit. Otherwise, we do our fancy trinomial stuff, which is the
X * same in all ther other cases due to all the global variables that have been
X * set up. The basic operation is to add the number at the rear pointer into
X * the one at the front pointer. Then both pointers are advanced to the next
X * location cyclically in the table. The value returned is the sum generated,
X * reduced to 31 bits by throwing away the "least random" low bit.
X * Note: the code takes advantage of the fact that both the front and
X * rear pointers can't wrap on the same call by not testing the rear
X * pointer if the front one has wrapped.
X * Returns a 31-bit random number.
X */
X
Xlong
Xrandom()
X{
X long i;
X
X if( rand_type == TYPE_0 ) {
X i = state[0] = ( state[0]*1103515245 + 12345 )&0x7fffffff;
X }
X else {
X *fptr += *rptr;
X i = (*fptr >> 1)&0x7fffffff; /* chucking least random bit */
X if( ++fptr >= end_ptr ) {
X fptr = state;
X ++rptr;
X }
X else {
X if( ++rptr >= end_ptr ) rptr = state;
X }
X }
X return( i );
X}
END_OF_FILE
if test 11902 -ne `wc -c <'rnd.c'`; then
echo shar: \"'rnd.c'\" unpacked with wrong size!
fi
# end of 'rnd.c'
fi
if test -f 'regexp.c' -a "${1}" != "-c" ; then
echo shar: Will not clobber existing file \"'regexp.c'\"
else
echo shar: Extracting \"'regexp.c'\" \(27786 characters\)
sed "s/^X//" >'regexp.c' <<'END_OF_FILE'
X/*
X * regcomp and regexec -- regsub and regerror are elsewhere
X *
X * Copyright (c) 1986 by University of Toronto.
X * Written by Henry Spencer. Not derived from licensed software.
X *
X * Permission is granted to anyone to use this software for any
X * purpose on any computer system, and to redistribute it freely,
X * subject to the following restrictions:
X *
X * 1. The author is not responsible for the consequences of use of
X * this software, no matter how awful, even if they arise
X * from defects in it.
X *
X * 2. The origin of this software must not be misrepresented, either
X * by explicit claim or by omission.
X *
X * 3. Altered versions must be plainly marked as such, and must not
X * be misrepresented as being the original software.
X *
X * Beware that some of this code is subtly aware of the way operator
X * precedence is structured in regular expressions. Serious changes in
X * regular-expression syntax might require a total rethink.
X */
X#ifdef OSK
X#define sp sp_ /* only for some compilers */
X#define STRCSPN
X#define strchr index
X#define STATIC extern
X#endif
X
X#include <stdio.h>
X#include "regexp.h"
X#include "regmagic.h"
X
X/*
X * The "internal use only" fields in regexp.h are present to pass info from
X * compile to execute that permits the execute phase to run lots faster on
X * simple cases. They are:
X *
X * regstart char that must begin a match; '\0' if none obvious
X * reganch is the match anchored (at beginning-of-line only)?
X * regmust string (pointer into program) that match must include, or NULL
X * regmlen length of regmust string
X *
X * Regstart and reganch permit very fast decisions on suitable starting points
X * for a match, cutting down the work a lot. Regmust permits fast rejection
X * of lines that cannot possibly match. The regmust tests are costly enough
X * that regcomp() supplies a regmust only if the r.e. contains something
X * potentially expensive (at present, the only such thing detected is * or +
X * at the start of the r.e., which can involve a lot of backup). Regmlen is
X * supplied because the test in regexec() needs it and regcomp() is computing
X * it anyway.
X */
X
X/*
X * Structure for regexp "program". This is essentially a linear encoding
X * of a nondeterministic finite-state machine (aka syntax charts or
X * "railroad normal form" in parsing technology). Each node is an opcode
X * plus a "next" pointer, possibly plus an operand. "Next" pointers of
X * all nodes except BRANCH implement concatenation; a "next" pointer with
X * a BRANCH on both ends of it is connecting two alternatives. (Here we
X * have one of the subtle syntax dependencies: an individual BRANCH (as
X * opposed to a collection of them) is never concatenated with anything
X * because of operator precedence.) The operand of some types of node is
X * a literal string; for others, it is a node leading into a sub-FSM. In
X * particular, the operand of a BRANCH node is the first node of the branch.
X * (NB this is *not* a tree structure: the tail of the branch connects
X * to the thing following the set of BRANCHes.) The opcodes are:
X */
X
X#ifdef OSK
X#ifdef EOL
X#undef EOL
X#endif
X#endif
X
X/* definition number opnd? meaning */
X#define END 0 /* no End of program. */
X#define BOL 1 /* no Match "" at beginning of line. */
X#define EOL 2 /* no Match "" at end of line. */
X#define ANY 3 /* no Match any one character. */
X#define ANYOF 4 /* str Match any character in this string. */
X#define ANYBUT 5 /* str Match any character not in this string. */
X#define BRANCH 6 /* node Match this alternative, or the next... */
X#define BACK 7 /* no Match "", "next" ptr points backward. */
X#define EXACTLY 8 /* str Match this string. */
X#define NOTHING 9 /* no Match empty string. */
X#define STAR 10 /* node Match this (simple) thing 0 or more times. */
X#define PLUS 11 /* node Match this (simple) thing 1 or more times. */
X#define OPEN 20 /* no Mark this point in input as start of #n. */
X /* OPEN+1 is number 1, etc. */
X#define CLOSE 30 /* no Analogous to OPEN. */
X
X/*
X * Opcode notes:
X *
X * BRANCH The set of branches constituting a single choice are hooked
X * together with their "next" pointers, since precedence prevents
X * anything being concatenated to any individual branch. The
X * "next" pointer of the last BRANCH in a choice points to the
X * thing following the whole choice. This is also where the
X * final "next" pointer of each individual branch points; each
X * branch starts with the operand node of a BRANCH node.
X *
X * BACK Normal "next" pointers all implicitly point forward; BACK
X * exists to make loop structures possible.
X *
X * STAR,PLUS '?', and complex '*' and '+', are implemented as circular
X * BRANCH structures using BACK. Simple cases (one character
X * per match) are implemented with STAR and PLUS for speed
X * and to minimize recursive plunges.
X *
X * OPEN,CLOSE ...are numbered at compile time.
X */
X
X/*
X * A node is one char of opcode followed by two chars of "next" pointer.
X * "Next" pointers are stored as two 8-bit pieces, high order first. The
X * value is a positive offset from the opcode of the node containing it.
X * An operand, if any, simply follows the node. (Note that much of the
X * code generation knows about this implicit relationship.)
X *
X * Using two bytes for the "next" pointer is vast overkill for most things,
X * but allows patterns to get big without disasters.
X */
X#define OP(p) (*(p))
X#define NEXT(p) (((*((p)+1)&0377)<<8) + *((p)+2)&0377)
X#define OPERAND(p) ((p) + 3)
X
X/*
X * See regmagic.h for one further detail of program structure.
X */
X
X
X/*
X * Utility definitions.
X */
X#ifndef CHARBITS
X#define UCHARAT(p) ((int)*(unsigned char *)(p))
X#else
X#define UCHARAT(p) ((int)*(p)&CHARBITS)
X#endif
X
X#define FAIL(m) { regerror(m); return(NULL); }
X#define ISMULT(c) ((c) == '*' || (c) == '+' || (c) == '?')
X#define META "^$.[()|?+*\\"
X
X/*
X * Flags to be passed up and down.
X */
X#define HASWIDTH 01 /* Known never to match null string. */
X#define SIMPLE 02 /* Simple enough to be STAR/PLUS operand. */
X#define SPSTART 04 /* Starts with * or +. */
X#define WORST 0 /* Worst case. */
X
X/*
X * Global work variables for regcomp().
X */
Xstatic char *regparse; /* Input-scan pointer. */
Xstatic int regnpar; /* () count. */
Xstatic char regdummy;
Xstatic char *regcode; /* Code-emit pointer; ®dummy = don't. */
Xstatic long regsize; /* Code size. */
X
X/*
X * Forward declarations for regcomp()'s friends.
X */
X#ifndef STATIC
X#define STATIC static
X#endif
XSTATIC char *reg();
XSTATIC char *regbranch();
XSTATIC char *regpiece();
XSTATIC char *regatom();
XSTATIC char *regnode();
XSTATIC char *regnext();
XSTATIC void regc();
XSTATIC void reginsert();
XSTATIC void regtail();
XSTATIC void regoptail();
X#ifdef STRCSPN
XSTATIC int strcspn();
X#endif
X
X/*
X - regcomp - compile a regular expression into internal code
X *
X * We can't allocate space until we know how big the compiled form will be,
X * but we can't compile it (and thus know how big it is) until we've got a
X * place to put the code. So we cheat: we compile it twice, once with code
X * generation turned off and size counting turned on, and once "for real".
X * This also means that we don't allocate space until we are sure that the
X * thing really will compile successfully, and we never have to move the
X * code and thus invalidate pointers into it. (Note that it has to be in
X * one piece because free() must be able to free it all.)
X *
X * Beware that the optimization-preparation code in here knows about some
X * of the structure of the compiled regexp.
X */
Xregexp *
Xregcomp(exp)
Xchar *exp;
X{
X register regexp *r;
X register char *scan;
X register char *longest;
X register int len;
X int flags;
X extern char *malloc();
X
X if (exp == NULL)
X FAIL("NULL argument");
X
X /* First pass: determine size, legality. */
X regparse = exp;
X regnpar = 1;
X regsize = 0L;
X regcode = ®dummy;
X regc(MAGIC);
X if (reg(0, &flags) == NULL)
X return(NULL);
X
X /* Small enough for pointer-storage convention? */
X if (regsize >= 32767L) /* Probably could be 65535L. */
X FAIL("regexp too big");
X
X /* Allocate space. */
X r = (regexp *)malloc(sizeof(regexp) + (unsigned)regsize);
X if (r == NULL)
X FAIL("out of space");
X
X /* Second pass: emit code. */
X regparse = exp;
X regnpar = 1;
X regcode = r->program;
X regc(MAGIC);
X if (reg(0, &flags) == NULL)
X return(NULL);
X
X /* Dig out information for optimizations. */
X r->regstart = '\0'; /* Worst-case defaults. */
X r->reganch = 0;
X r->regmust = NULL;
X r->regmlen = 0;
X scan = r->program+1; /* First BRANCH. */
X if (OP(regnext(scan)) == END) { /* Only one top-level choice. */
X scan = OPERAND(scan);
X
X /* Starting-point info. */
X if (OP(scan) == EXACTLY)
X r->regstart = *OPERAND(scan);
X else if (OP(scan) == BOL)
X r->reganch++;
X
X /*
X * If there's something expensive in the r.e., find the
X * longest literal string that must appear and make it the
X * regmust. Resolve ties in favor of later strings, since
X * the regstart check works with the beginning of the r.e.
X * and avoiding duplication strengthens checking. Not a
X * strong reason, but sufficient in the absence of others.
X */
X if (flags&SPSTART) {
X longest = NULL;
X len = 0;
X for (; scan != NULL; scan = regnext(scan))
X if (OP(scan) == EXACTLY && strlen(OPERAND(scan)) >= len) {
X longest = OPERAND(scan);
X len = strlen(OPERAND(scan));
X }
X r->regmust = longest;
X r->regmlen = len;
X }
X }
X
X return(r);
X}
X
X/*
X - reg - regular expression, i.e. main body or parenthesized thing
X *
X * Caller must absorb opening parenthesis.
X *
X * Combining parenthesis handling with the base level of regular expression
X * is a trifle forced, but the need to tie the tails of the branches to what
X * follows makes it hard to avoid.
X */
Xstatic char *
Xreg(paren, flagp)
Xint paren; /* Parenthesized? */
Xint *flagp;
X{
X register char *ret;
X register char *br;
X register char *ender;
X register int parno;
X int flags;
X
X *flagp = HASWIDTH; /* Tentatively. */
X
X /* Make an OPEN node, if parenthesized. */
X if (paren) {
X if (regnpar >= NSUBEXP)
X FAIL("too many ()");
X parno = regnpar;
X regnpar++;
X ret = regnode(OPEN+parno);
X } else
X ret = NULL;
X
X /* Pick up the branches, linking them together. */
X br = regbranch(&flags);
X if (br == NULL)
X return(NULL);
X if (ret != NULL)
X regtail(ret, br); /* OPEN -> first. */
X else
X ret = br;
X if (!(flags&HASWIDTH))
X *flagp &= ~HASWIDTH;
X *flagp |= flags&SPSTART;
X while (*regparse == '|') {
X regparse++;
X br = regbranch(&flags);
X if (br == NULL)
X return(NULL);
X regtail(ret, br); /* BRANCH -> BRANCH. */
X if (!(flags&HASWIDTH))
X *flagp &= ~HASWIDTH;
X *flagp |= flags&SPSTART;
X }
X
X /* Make a closing node, and hook it on the end. */
X ender = regnode((paren) ? CLOSE+parno : END);
X regtail(ret, ender);
X
X /* Hook the tails of the branches to the closing node. */
X for (br = ret; br != NULL; br = regnext(br))
X regoptail(br, ender);
X
X /* Check for proper termination. */
X if (paren && *regparse++ != ')') {
X FAIL("unmatched ()");
X } else if (!paren && *regparse != '\0') {
X if (*regparse == ')') {
X FAIL("unmatched ()");
X } else
X FAIL("junk on end"); /* "Can't happen". */
X /* NOTREACHED */
X }
X
X return(ret);
X}
X
X/*
X - regbranch - one alternative of an | operator
X *
X * Implements the concatenation operator.
X */
Xstatic char *
Xregbranch(flagp)
Xint *flagp;
X{
X register char *ret;
X register char *chain;
X register char *latest;
X int flags;
X
X *flagp = WORST; /* Tentatively. */
X
X ret = regnode(BRANCH);
X chain = NULL;
X while (*regparse != '\0' && *regparse != '|' && *regparse != ')') {
X latest = regpiece(&flags);
X if (latest == NULL)
X return(NULL);
X *flagp |= flags&HASWIDTH;
X if (chain == NULL) /* First piece. */
X *flagp |= flags&SPSTART;
X else
X regtail(chain, latest);
X chain = latest;
X }
X if (chain == NULL) /* Loop ran zero times. */
X (void) regnode(NOTHING);
X
X return(ret);
X}
X
X/*
X - regpiece - something followed by possible [*+?]
X *
X * Note that the branching code sequences used for ? and the general cases
X * of * and + are somewhat optimized: they use the same NOTHING node as
X * both the endmarker for their branch list and the body of the last branch.
X * It might seem that this node could be dispensed with entirely, but the
X * endmarker role is not redundant.
X */
Xstatic char *
Xregpiece(flagp)
Xint *flagp;
X{
X register char *ret;
X register char op;
X register char *next;
X int flags;
X
X ret = regatom(&flags);
X if (ret == NULL)
X return(NULL);
X
X op = *regparse;
X if (!ISMULT(op)) {
X *flagp = flags;
X return(ret);
X }
X
X if (!(flags&HASWIDTH) && op != '?')
X FAIL("*+ operand could be empty");
X *flagp = (op != '+') ? (WORST|SPSTART) : (WORST|HASWIDTH);
X
X if (op == '*' && (flags&SIMPLE))
X reginsert(STAR, ret);
X else if (op == '*') {
X /* Emit x* as (x&|), where & means "self". */
X reginsert(BRANCH, ret); /* Either x */
X regoptail(ret, regnode(BACK)); /* and loop */
X regoptail(ret, ret); /* back */
X regtail(ret, regnode(BRANCH)); /* or */
X regtail(ret, regnode(NOTHING)); /* null. */
X } else if (op == '+' && (flags&SIMPLE))
X reginsert(PLUS, ret);
X else if (op == '+') {
X /* Emit x+ as x(&|), where & means "self". */
X next = regnode(BRANCH); /* Either */
X regtail(ret, next);
X regtail(regnode(BACK), ret); /* loop back */
X regtail(next, regnode(BRANCH)); /* or */
X regtail(ret, regnode(NOTHING)); /* null. */
X } else if (op == '?') {
X /* Emit x? as (x|) */
X reginsert(BRANCH, ret); /* Either x */
X regtail(ret, regnode(BRANCH)); /* or */
X next = regnode(NOTHING); /* null. */
X regtail(ret, next);
X regoptail(ret, next);
X }
X regparse++;
X if (ISMULT(*regparse))
X FAIL("nested *?+");
X
X return(ret);
X}
X
X/*
X - regatom - the lowest level
X *
X * Optimization: gobbles an entire sequence of ordinary characters so that
X * it can turn them into a single node, which is smaller to store and
X * faster to run. Backslashed characters are exceptions, each becoming a
X * separate node; the code is simpler that way and it's not worth fixing.
X */
Xstatic char *
Xregatom(flagp)
Xint *flagp;
X{
X register char *ret;
X int flags;
X
X *flagp = WORST; /* Tentatively. */
X
X switch (*regparse++) {
X case '^':
X ret = regnode(BOL);
X break;
X case '$':
X ret = regnode(EOL);
X break;
X case '.':
X ret = regnode(ANY);
X *flagp |= HASWIDTH|SIMPLE;
X break;
X case '[': {
X register int class;
X register int classend;
X
X if (*regparse == '^') { /* Complement of range. */
X ret = regnode(ANYBUT);
X regparse++;
X } else
X ret = regnode(ANYOF);
X if (*regparse == ']' || *regparse == '-')
X regc(*regparse++);
X while (*regparse != '\0' && *regparse != ']') {
X if (*regparse == '-') {
X regparse++;
X if (*regparse == ']' || *regparse == '\0')
X regc('-');
X else {
X class = UCHARAT(regparse-2)+1;
X classend = UCHARAT(regparse);
X if (class > classend+1)
X FAIL("invalid [] range");
X for (; class <= classend; class++)
X regc(class);
X regparse++;
X }
X } else
X regc(*regparse++);
X }
X regc('\0');
X if (*regparse != ']')
X FAIL("unmatched []");
X regparse++;
X *flagp |= HASWIDTH|SIMPLE;
X }
X break;
X case '(':
X ret = reg(1, &flags);
X if (ret == NULL)
X return(NULL);
X *flagp |= flags&(HASWIDTH|SPSTART);
X break;
X case '\0':
X case '|':
X case ')':
X FAIL("internal urp"); /* Supposed to be caught earlier. */
X break;
X case '?':
X case '+':
X case '*':
X FAIL("?+* follows nothing");
X break;
X case '\\':
X if (*regparse == '\0')
X FAIL("trailing \\");
X ret = regnode(EXACTLY);
X regc(*regparse++);
X regc('\0');
X *flagp |= HASWIDTH|SIMPLE;
X break;
X default: {
X register int len;
X register char ender;
X
X regparse--;
X len = strcspn(regparse, META);
X if (len <= 0)
X FAIL("internal disaster");
X ender = *(regparse+len);
X if (len > 1 && ISMULT(ender))
X len--; /* Back off clear of ?+* operand. */
X *flagp |= HASWIDTH;
X if (len == 1)
X *flagp |= SIMPLE;
X ret = regnode(EXACTLY);
X while (len > 0) {
X regc(*regparse++);
X len--;
X }
X regc('\0');
X }
X break;
X }
X
X return(ret);
X}
X
X/*
X - regnode - emit a node
X */
Xstatic char * /* Location. */
Xregnode(op)
Xchar op;
X{
X register char *ret;
X register char *ptr;
X
X ret = regcode;
X if (ret == ®dummy) {
X regsize += 3;
X return(ret);
X }
X
X ptr = ret;
X *ptr++ = op;
X *ptr++ = '\0'; /* Null "next" pointer. */
X *ptr++ = '\0';
X regcode = ptr;
X
X return(ret);
X}
X
X/*
X - regc - emit (if appropriate) a byte of code
X */
Xstatic void
Xregc(b)
Xchar b;
X{
X if (regcode != ®dummy)
X *regcode++ = b;
X else
X regsize++;
X}
X
X/*
X - reginsert - insert an operator in front of already-emitted operand
X *
X * Means relocating the operand.
X */
Xstatic void
Xreginsert(op, opnd)
Xchar op;
Xchar *opnd;
X{
X register char *src;
X register char *dst;
X register char *place;
X
X if (regcode == ®dummy) {
X regsize += 3;
X return;
X }
X
X src = regcode;
X regcode += 3;
X dst = regcode;
X while (src > opnd)
X *--dst = *--src;
X
X place = opnd; /* Op node, where operand used to be. */
X *place++ = op;
X *place++ = '\0';
X *place++ = '\0';
X}
X
X/*
X - regtail - set the next-pointer at the end of a node chain
X */
Xstatic void
Xregtail(p, val)
Xchar *p;
Xchar *val;
X{
X register char *scan;
X register char *temp;
X register int offset;
X
X if (p == ®dummy)
X return;
X
X /* Find last node. */
X scan = p;
X for (;;) {
X temp = regnext(scan);
X if (temp == NULL)
X break;
X scan = temp;
X }
X
X if (OP(scan) == BACK)
X offset = scan - val;
X else
X offset = val - scan;
X *(scan+1) = (offset>>8)&0377;
X *(scan+2) = offset&0377;
X}
X
X/*
X - regoptail - regtail on operand of first argument; nop if operandless
X */
Xstatic void
Xregoptail(p, val)
Xchar *p;
Xchar *val;
X{
X /* "Operandless" and "op != BRANCH" are synonymous in practice. */
X if (p == NULL || p == ®dummy || OP(p) != BRANCH)
X return;
X regtail(OPERAND(p), val);
X}
X
X/*
X * regexec and friends
X */
X
X/*
X * Global work variables for regexec().
X */
Xstatic char *reginput; /* String-input pointer. */
Xstatic char *regbol; /* Beginning of input, for ^ check. */
Xstatic char **regstartp; /* Pointer to startp array. */
Xstatic char **regendp; /* Ditto for endp. */
X
X/*
X * Forwards.
X */
XSTATIC int regtry();
XSTATIC int regmatch();
XSTATIC int regrepeat();
X
X#ifdef DEBUG
Xint regnarrate = 0;
Xvoid regdump();
XSTATIC char *regprop();
X#endif
X
X/*
X - regexec - match a regexp against a string
X */
Xint
Xregexec(prog, string)
Xregister regexp *prog;
Xregister char *string;
X{
X register char *s;
X extern char *strchr();
X
X /* Be paranoid... */
X if (prog == NULL || string == NULL) {
X regerror("NULL parameter");
X return(0);
X }
X
X /* Check validity of program. */
X if (UCHARAT(prog->program) != MAGIC) {
X regerror("corrupted program");
X return(0);
X }
X
X /* If there is a "must appear" string, look for it. */
X if (prog->regmust != NULL) {
X s = string;
X while ((s = strchr(s, prog->regmust[0])) != NULL) {
X if (strncmp(s, prog->regmust, prog->regmlen) == 0)
X break; /* Found it. */
X s++;
X }
X if (s == NULL) /* Not present. */
X return(0);
X }
X
X /* Mark beginning of line for ^ . */
X regbol = string;
X
X /* Simplest case: anchored match need be tried only once. */
X if (prog->reganch)
X return(regtry(prog, string));
X
X /* Messy cases: unanchored match. */
X s = string;
X if (prog->regstart != '\0')
X /* We know what char it must start with. */
X while ((s = strchr(s, prog->regstart)) != NULL) {
X if (regtry(prog, s))
X return(1);
X s++;
X }
X else
X /* We don't -- general case. */
X do {
X if (regtry(prog, s))
X return(1);
X } while (*s++ != '\0');
X
X /* Failure. */
X return(0);
X}
X
X/*
X - regtry - try match at specific point
X */
Xstatic int /* 0 failure, 1 success */
Xregtry(prog, string)
Xregexp *prog;
Xchar *string;
X{
X register int i;
X register char **sp;
X register char **ep;
X
X reginput = string;
X regstartp = prog->startp;
X regendp = prog->endp;
X
X sp = prog->startp;
X ep = prog->endp;
X for (i = NSUBEXP; i > 0; i--) {
X *sp++ = NULL;
X *ep++ = NULL;
X }
X if (regmatch(prog->program + 1)) {
X prog->startp[0] = string;
X prog->endp[0] = reginput;
X return(1);
X } else
X return(0);
X}
X
X/*
X - regmatch - main matching routine
X *
X * Conceptually the strategy is simple: check to see whether the current
X * node matches, call self recursively to see whether the rest matches,
X * and then act accordingly. In practice we make some effort to avoid
X * recursion, in particular by going through "ordinary" nodes (that don't
X * need to know whether the rest of the match failed) by a loop instead of
X * by recursion.
X */
Xstatic int /* 0 failure, 1 success */
Xregmatch(prog)
Xchar *prog;
X{
X register char *scan; /* Current node. */
X char *next; /* Next node. */
X extern char *strchr();
X
X scan = prog;
X#ifdef DEBUG
X if (scan != NULL && regnarrate)
X fprintf(stderr, "%s(\n", regprop(scan));
X#endif
X while (scan != NULL) {
X#ifdef DEBUG
X if (regnarrate)
X fprintf(stderr, "%s...\n", regprop(scan));
X#endif
X next = regnext(scan);
X
X switch (OP(scan)) {
X case BOL:
X if (reginput != regbol)
X return(0);
X break;
X case EOL:
X if (*reginput != '\0')
X return(0);
X break;
X case ANY:
X if (*reginput == '\0')
X return(0);
X reginput++;
X break;
X case EXACTLY: {
X register int len;
X register char *opnd;
X
X opnd = OPERAND(scan);
X /* Inline the first character, for speed. */
X if (*opnd != *reginput)
X return(0);
X len = strlen(opnd);
X if (len > 1 && strncmp(opnd, reginput, len) != 0)
X return(0);
X reginput += len;
X }
X break;
X case ANYOF:
X if (*reginput == '\0' || strchr(OPERAND(scan), *reginput) == NULL)
X return(0);
X reginput++;
X break;
X case ANYBUT:
X if (*reginput == '\0' || strchr(OPERAND(scan), *reginput) != NULL)
X return(0);
X reginput++;
X break;
X case NOTHING:
X break;
X case BACK:
X break;
X case OPEN+1:
X case OPEN+2:
X case OPEN+3:
X case OPEN+4:
X case OPEN+5:
X case OPEN+6:
X case OPEN+7:
X case OPEN+8:
X case OPEN+9: {
X register int no;
X register char *save;
X
X no = OP(scan) - OPEN;
X save = reginput;
X
X if (regmatch(next)) {
X /*
X * Don't set startp if some later
X * invocation of the same parentheses
X * already has.
X */
X if (regstartp[no] == NULL)
X regstartp[no] = save;
X return(1);
X } else
X return(0);
X }
X break;
X case CLOSE+1:
X case CLOSE+2:
X case CLOSE+3:
X case CLOSE+4:
X case CLOSE+5:
X case CLOSE+6:
X case CLOSE+7:
X case CLOSE+8:
X case CLOSE+9: {
X register int no;
X register char *save;
X
X no = OP(scan) - CLOSE;
X save = reginput;
X
X if (regmatch(next)) {
X /*
X * Don't set endp if some later
X * invocation of the same parentheses
X * already has.
X */
X if (regendp[no] == NULL)
X regendp[no] = save;
X return(1);
X } else
X return(0);
X }
X break;
X case BRANCH: {
X register char *save;
X
X if (OP(next) != BRANCH) /* No choice. */
X next = OPERAND(scan); /* Avoid recursion. */
X else {
X do {
X save = reginput;
X if (regmatch(OPERAND(scan)))
X return(1);
X reginput = save;
X scan = regnext(scan);
X } while (scan != NULL && OP(scan) == BRANCH);
X return(0);
X /* NOTREACHED */
X }
X }
X break;
X case STAR:
X case PLUS: {
X register char nextch;
X register int no;
X register char *save;
X register int min;
X
X /*
X * Lookahead to avoid useless match attempts
X * when we know what character comes next.
X */
X nextch = '\0';
X if (OP(next) == EXACTLY)
X nextch = *OPERAND(next);
X min = (OP(scan) == STAR) ? 0 : 1;
X save = reginput;
X no = regrepeat(OPERAND(scan));
X while (no >= min) {
X /* If it could work, try it. */
X if (nextch == '\0' || *reginput == nextch)
X if (regmatch(next))
X return(1);
X /* Couldn't or didn't -- back up. */
X no--;
X reginput = save + no;
X }
X return(0);
X }
X break;
X case END:
X return(1); /* Success! */
X break;
X default:
X regerror("memory corruption");
X return(0);
X break;
X }
X
X scan = next;
X }
X
X /*
X * We get here only if there's trouble -- normally "case END" is
X * the terminating point.
X */
X regerror("corrupted pointers");
X return(0);
X}
X
X/*
X - regrepeat - repeatedly match something simple, report how many
X */
Xstatic int
Xregrepeat(p)
Xchar *p;
X{
X register int count = 0;
X register char *scan;
X register char *opnd;
X
X scan = reginput;
X opnd = OPERAND(p);
X switch (OP(p)) {
X case ANY:
X count = strlen(scan);
X scan += count;
X break;
X case EXACTLY:
X while (*opnd == *scan) {
X count++;
X scan++;
X }
X break;
X case ANYOF:
X while (*scan != '\0' && strchr(opnd, *scan) != NULL) {
X count++;
X scan++;
X }
X break;
X case ANYBUT:
X while (*scan != '\0' && strchr(opnd, *scan) == NULL) {
X count++;
X scan++;
X }
X break;
X default: /* Oh dear. Called inappropriately. */
X regerror("internal foulup");
X count = 0; /* Best compromise. */
X break;
X }
X reginput = scan;
X
X return(count);
X}
X
X/*
X - regnext - dig the "next" pointer out of a node
X */
Xstatic char *
Xregnext(p)
Xregister char *p;
X{
X register int offset;
X
X if (p == ®dummy)
X return(NULL);
X
X offset = NEXT(p);
X if (offset == 0)
X return(NULL);
X
X if (OP(p) == BACK)
X return(p-offset);
X else
X return(p+offset);
X}
X
X#ifdef DEBUG
X
XSTATIC char *regprop();
X
X/*
X - regdump - dump a regexp onto stdout in vaguely comprehensible form
X */
Xvoid
Xregdump(r)
Xregexp *r;
X{
X register char *s;
X register char op = EXACTLY; /* Arbitrary non-END op. */
X register char *next;
X extern char *strchr();
X
X
X s = r->program + 1;
X while (op != END) { /* While that wasn't END last time... */
X op = OP(s);
X printf("%2d%s", s-r->program, regprop(s)); /* Where, what. */
X next = regnext(s);
X if (next == NULL) /* Next ptr. */
X printf("(0)");
X else
X printf("(%d)", (s-r->program)+(next-s));
X s += 3;
X if (op == ANYOF || op == ANYBUT || op == EXACTLY) {
X /* Literal string, where present. */
X while (*s != '\0') {
X putchar(*s);
X s++;
X }
X s++;
X }
X putchar('\n');
X }
X
X /* Header fields of interest. */
X if (r->regstart != '\0')
X printf("start `%c' ", r->regstart);
X if (r->reganch)
X printf("anchored ");
X if (r->regmust != NULL)
X printf("must have \"%s\"", r->regmust);
X printf("\n");
X}
X
X/*
X - regprop - printable representation of opcode
X */
Xstatic char *
Xregprop(op)
Xchar *op;
X{
X register char *p;
X static char buf[50];
X
X (void) strcpy(buf, ":");
X
X switch (OP(op)) {
X case BOL:
X p = "BOL";
X break;
X case EOL:
X p = "EOL";
X break;
X case ANY:
X p = "ANY";
X break;
X case ANYOF:
X p = "ANYOF";
X break;
X case ANYBUT:
X p = "ANYBUT";
X break;
X case BRANCH:
X p = "BRANCH";
X break;
X case EXACTLY:
X p = "EXACTLY";
X break;
X case NOTHING:
X p = "NOTHING";
X break;
X case BACK:
X p = "BACK";
X break;
X case END:
X p = "END";
X break;
X case OPEN+1:
X case OPEN+2:
X case OPEN+3:
X case OPEN+4:
X case OPEN+5:
X case OPEN+6:
X case OPEN+7:
X case OPEN+8:
X case OPEN+9:
X sprintf(buf+strlen(buf), "OPEN%d", OP(op)-OPEN);
X p = NULL;
X break;
X case CLOSE+1:
X case CLOSE+2:
X case CLOSE+3:
X case CLOSE+4:
X case CLOSE+5:
X case CLOSE+6:
X case CLOSE+7:
X case CLOSE+8:
X case CLOSE+9:
X sprintf(buf+strlen(buf), "CLOSE%d", OP(op)-CLOSE);
X p = NULL;
X break;
X case STAR:
X p = "STAR";
X break;
X case PLUS:
X p = "PLUS";
X break;
X default:
X regerror("corrupted opcode");
X break;
X }
X if (p != NULL)
X (void) strcat(buf, p);
X return(buf);
X}
X#endif
X
X/*
X * The following is provided for those people who do not have strcspn() in
X * their C libraries. They should get off their butts and do something
X * about it; at least one public-domain implementation of those (highly
X * useful) string routines has been published on Usenet.
X */
X#ifdef STRCSPN
X/*
X * strcspn - find length of initial segment of s1 consisting entirely
X * of characters not from s2
X */
X
Xstatic int
Xstrcspn(s1, s2)
Xchar *s1;
Xchar *s2;
X{
X register char *scan1;
X register char *scan2;
X register int count;
X
X count = 0;
X for (scan1 = s1; *scan1 != '\0'; scan1++) {
X for (scan2 = s2; *scan2 != '\0';) /* ++ moved down. */
X if (*scan1 == *scan2++)
X return(count);
X count++;
X }
X return(count);
X}
X#endif
END_OF_FILE
if test 27786 -ne `wc -c <'regexp.c'`; then
echo shar: \"'regexp.c'\" unpacked with wrong size!
fi
# end of 'regexp.c'
fi
echo shar: End of archive 5 \(of 5\).
cp /dev/null ark5isdone
MISSING=""
for I in 1 2 3 4 5 ; do
if test ! -f ark${I}isdone ; then
MISSING="${MISSING} ${I}"
fi
done
if test "${MISSING}" = "" ; then
echo You have unpacked all 5 archives.
rm -f ark[1-9]isdone
else
echo You still need to unpack the following archives:
echo " " ${MISSING}
fi
## End of shell archive.
exit 0
--
| Wolfgang Ocker | ocker@lan.informatik.tu-muenchen.dbp.de |
| Lochhauserstr. 35a | pyramid!tmpmbx!recco!weo (home) |
| D-8039 Puchheim | Technische Universitaet Muenchen |
| Voice: +49 89 80 77 02 | Huh, What? Where am I? |