amiga-request@abcfd20.larc.nasa.gov (Amiga Sources/Binaries Moderator) (09/04/90)
Submitted-by: David Schanen <mtv@milton.u.washington.edu> Posting-number: Volume 90, Issue 256 Archive-name: applications/dkbtrace-2.01/part08 #!/bin/sh # This is a shell archive. Remove anything before this line, then unpack # it by saving it into a file and typing "sh file". To overwrite existing # files, type "sh file -c". You can also feed this as standard input via # unshar, or by typing "sh <file", e.g.. If this archive is complete, you # will see the following message at the end: # "End of archive 8 (of 10)." # Contents: src/texture.c # Wrapped by tadguy@abcfd20 on Mon Sep 3 19:21:21 1990 PATH=/bin:/usr/bin:/usr/ucb ; export PATH if test -f 'src/texture.c' -a "${1}" != "-c" ; then echo shar: Will not clobber existing file \"'src/texture.c'\" else echo shar: Extracting \"'src/texture.c'\" \(28884 characters\) sed "s/^X//" >'src/texture.c' <<'END_OF_FILE' X/***************************************************************************** X* X* texture.c X* X* from DKBTrace (c) 1990 David Buck X* X* This module implements solid texturing functions such as wood, marble, and X* bozo. The noise function used here is the one described by Ken Perlin in X* "Hypertexture", SIGGRAPH '89 Conference Proceedings page 253. X* X* This software is freely distributable. The source and/or object code may be X* copied or uploaded to communications services so long as this notice remains X* at the top of each file. If any changes are made to the program, you must X* clearly indicate in the documentation and in the programs startup message X* who it was who made the changes. The documentation should also describe what X* those changes were. This software may not be included in whole or in X* part into any commercial package without the express written consent of the X* author. It may, however, be included in other public domain or freely X* distributed software so long as the proper credit for the software is given. X* X* This software is provided as is without any guarantees or warranty. Although X* the author has attempted to find and correct any bugs in the software, he X* is not responsible for any damage caused by the use of the software. The X* author is under no obligation to provide service, corrections, or upgrades X* to this package. X* X* Despite all the legal stuff above, if you do find bugs, I would like to hear X* about them. Also, if you have any comments or questions, you may contact me X* at the following address: X* X* David Buck X* 22C Sonnet Cres. X* Nepean Ontario X* Canada, K2H 8W7 X* X* I can also be reached on the following bulleton boards: X* X* ATX (613) 526-4141 X* OMX (613) 731-3419 X* Mystic (613) 731-0088 or (613) 731-6698 X* X* Fidonet: 1:163/109.9 X* Internet: David_Buck@Carleton.CA X* X* IBM Port by Aaron A. Collins. Aaron may be reached on the following BBS'es: X* X* Lattice BBS (708) 916-1200 X* The Information Exchange BBS (708) 945-5575 X* Stillwaters BBS (708) 403-2826 X* X* X* X* X* The Noise and DNoise functions (and associated functions) were written by X* Robert Skinner (robert@sgi.com) and are used here with his permission. X* They are a lot better than the noise functions I had before! X* X*****************************************************************************/ X X X#include "frame.h" X#include "vector.h" X#include "dkbproto.h" X Xextern long Calls_To_Noise, Calls_To_DNoise; X X#define MINX -10000 /* Ridiculously large scaling values */ X#define MINY MINX X#define MINZ MINX X X#define MAXSIZE 267 X#define RNDMASK 0x7FFF X#define RNDDIVISOR (float) RNDMASK X#define NUMBER_OF_WAVES 10 X#define SINTABSIZE 1000 X#define EPSILON (DBL) 0.00001 X X#define FLOOR(x) ((x) >= 0.0 ? floor(x) : (0.0 - floor(0.0 - (x)) - 1.0)) X#define FABS(x) ((x) < 0.0 ? (0.0 - x) : (x)) X#define SCURVE(a) ((a)*(a)*(3.0-2.0*(a))) X#define REALSCALE ( 2.0 / 65535.0 ) X#define Hash3d(a,b,c) hashTable[(int)(hashTable[(int)(hashTable[(int)((a) & 0xfffL)] ^ ((b) & 0xfffL))] ^ ((c) & 0xfffL))] X#define INCRSUM(m,s,x,y,z) ((s)*(RTable[m]*0.5 \ X + RTable[m+1]*(x) \ X + RTable[m+2]*(y) \ X + RTable[m+3]*(z))) X XDBL sintab [SINTABSIZE]; XDBL frequency[NUMBER_OF_WAVES]; XVECTOR Wave_Sources[NUMBER_OF_WAVES]; XDBL RTable[MAXSIZE]; Xshort *hashTable; Xunsigned short crctab[256] = X{ X 0x0000, 0xc0c1, 0xc181, 0x0140, 0xc301, 0x03c0, 0x0280, 0xc241, X 0xc601, 0x06c0, 0x0780, 0xc741, 0x0500, 0xc5c1, 0xc481, 0x0440, X 0xcc01, 0x0cc0, 0x0d80, 0xcd41, 0x0f00, 0xcfc1, 0xce81, 0x0e40, X 0x0a00, 0xcac1, 0xcb81, 0x0b40, 0xc901, 0x09c0, 0x0880, 0xc841, X 0xd801, 0x18c0, 0x1980, 0xd941, 0x1b00, 0xdbc1, 0xda81, 0x1a40, X 0x1e00, 0xdec1, 0xdf81, 0x1f40, 0xdd01, 0x1dc0, 0x1c80, 0xdc41, X 0x1400, 0xd4c1, 0xd581, 0x1540, 0xd701, 0x17c0, 0x1680, 0xd641, X 0xd201, 0x12c0, 0x1380, 0xd341, 0x1100, 0xd1c1, 0xd081, 0x1040, X 0xf001, 0x30c0, 0x3180, 0xf141, 0x3300, 0xf3c1, 0xf281, 0x3240, X 0x3600, 0xf6c1, 0xf781, 0x3740, 0xf501, 0x35c0, 0x3480, 0xf441, X 0x3c00, 0xfcc1, 0xfd81, 0x3d40, 0xff01, 0x3fc0, 0x3e80, 0xfe41, X 0xfa01, 0x3ac0, 0x3b80, 0xfb41, 0x3900, 0xf9c1, 0xf881, 0x3840, X 0x2800, 0xe8c1, 0xe981, 0x2940, 0xeb01, 0x2bc0, 0x2a80, 0xea41, X 0xee01, 0x2ec0, 0x2f80, 0xef41, 0x2d00, 0xedc1, 0xec81, 0x2c40, X 0xe401, 0x24c0, 0x2580, 0xe541, 0x2700, 0xe7c1, 0xe681, 0x2640, X 0x2200, 0xe2c1, 0xe381, 0x2340, 0xe101, 0x21c0, 0x2080, 0xe041, X 0xa001, 0x60c0, 0x6180, 0xa141, 0x6300, 0xa3c1, 0xa281, 0x6240, X 0x6600, 0xa6c1, 0xa781, 0x6740, 0xa501, 0x65c0, 0x6480, 0xa441, X 0x6c00, 0xacc1, 0xad81, 0x6d40, 0xaf01, 0x6fc0, 0x6e80, 0xae41, X 0xaa01, 0x6ac0, 0x6b80, 0xab41, 0x6900, 0xa9c1, 0xa881, 0x6840, X 0x7800, 0xb8c1, 0xb981, 0x7940, 0xbb01, 0x7bc0, 0x7a80, 0xba41, X 0xbe01, 0x7ec0, 0x7f80, 0xbf41, 0x7d00, 0xbdc1, 0xbc81, 0x7c40, X 0xb401, 0x74c0, 0x7580, 0xb541, 0x7700, 0xb7c1, 0xb681, 0x7640, X 0x7200, 0xb2c1, 0xb381, 0x7340, 0xb101, 0x71c0, 0x7080, 0xb041, X 0x5000, 0x90c1, 0x9181, 0x5140, 0x9301, 0x53c0, 0x5280, 0x9241, X 0x9601, 0x56c0, 0x5780, 0x9741, 0x5500, 0x95c1, 0x9481, 0x5440, X 0x9c01, 0x5cc0, 0x5d80, 0x9d41, 0x5f00, 0x9fc1, 0x9e81, 0x5e40, X 0x5a00, 0x9ac1, 0x9b81, 0x5b40, 0x9901, 0x59c0, 0x5880, 0x9841, X 0x8801, 0x48c0, 0x4980, 0x8941, 0x4b00, 0x8bc1, 0x8a81, 0x4a40, X 0x4e00, 0x8ec1, 0x8f81, 0x4f40, 0x8d01, 0x4dc0, 0x4c80, 0x8c41, X 0x4400, 0x84c1, 0x8581, 0x4540, 0x8701, 0x47c0, 0x4680, 0x8641, X 0x8201, 0x42c0, 0x4380, 0x8341, 0x4100, 0x81c1, 0x8081, 0x4040 X}; X X Xvoid Compute_Colour (Colour, Colour_Map, value) X COLOUR *Colour; X COLOUR_MAP *Colour_Map; X DBL value; X { X register int i; X COLOUR_MAP_ENTRY *Entry; X register DBL fraction; X X for (i = 0, Entry = &(Colour_Map->Colour_Map_Entries[0]) ; i < Colour_Map -> Number_Of_Entries ; i++, Entry++) X if ((value >= Entry->start) && (value <= Entry->end)) X { X fraction = (value - Entry->start) / (Entry->end - Entry->start); X Colour -> Red = Entry->Start_Colour.Red + fraction * (Entry->End_Colour.Red - Entry->Start_Colour.Red); X Colour -> Green = Entry->Start_Colour.Green + fraction * (Entry->End_Colour.Green - Entry->Start_Colour.Green); X Colour -> Blue = Entry->Start_Colour.Blue + fraction * (Entry->End_Colour.Blue - Entry->Start_Colour.Blue); X Colour -> Alpha = Entry->Start_Colour.Alpha + fraction * (Entry->End_Colour.Alpha - Entry->Start_Colour.Alpha); X return; X } X X Colour -> Red = 0.0; X Colour -> Green = 0.0; X Colour -> Blue = 0.0; X Colour -> Alpha = 0.0; X printf ("No colour for value: %f\n", value); X return; X } X Xvoid Initialize_Noise () X { X register int i = 0; X VECTOR point; X X InitRTable(); X X for (i = 0 ; i < SINTABSIZE ; i++) X sintab[i] = sin(i/(DBL)SINTABSIZE * (3.14159265359 * 2.0)); X X for (i = 0 ; i < NUMBER_OF_WAVES ; i++) X { X DNoise (&point, (DBL) i, 0.0, 0.0); X VNormalize (Wave_Sources[i], point); X frequency[i] = (rand() & RNDMASK) / RNDDIVISOR + 0.01; X } X } X Xvoid InitTextureTable() X { X int i, j, temp; X X srand(0); X X hashTable = (short int *) malloc(4096*sizeof(short int)); X for (i = 0; i < 4096; i++) X hashTable[i] = i; X for (i = 4095; i >= 0; i--) X { X j = rand() % 4096; X temp = hashTable[i]; X hashTable[i] = hashTable[j]; X hashTable[j] = temp; X } X } X X X/* modified by AAC to work properly with little bitty integers (16 bits) */ X Xvoid InitRTable() X { X int i; X VECTOR rp; X X InitTextureTable(); X X for (i = 0; i < MAXSIZE; i++) X { X rp.x = rp.y = rp.z = (DBL)i; X RTable[i] = (unsigned int) R(&rp) * REALSCALE - 1.0; X } X } X X Xint R(v) X VECTOR *v; X { X v->x *= .12345; X v->y *= .12345; X v->z *= .12345; X X return (Crc16((char *) v, sizeof(VECTOR))); X } X X/* X * Note that passing a VECTOR array to Crc16 and interpreting it as X * an array of chars means that machines with different floating-point X * representation schemes will evaluate Noise(point) differently. X */ X Xint Crc16(buf, count) X register char *buf; X register int count; X { X register unsigned short crc = 0; X X while (count--) X crc = (crc >> 8) ^ crctab[ (unsigned char) (crc ^ *buf++) ]; X X return ((int) crc); X } X X X/* X Robert's Skinner's Perlin-style "Noise" function - modified by AAC X to ensure uniformly distributed clamped values between 0 and 1.0... X*/ X XDBL Noise(x, y, z) X DBL x, y, z; X { X register long ix, iy, iz, jx, jy, jz; X DBL sx, sy, sz, tx, ty, tz; X DBL sum; X short m; X X X Calls_To_Noise++; X /* ensures the values are positive. */ X x -= MINX; X y -= MINY; X z -= MINZ; X X /* its equivalent integer lattice point. */ X ix = (long)x; iy = (long)y; iz = (long)z; X jx = ix + 1; jy = iy + 1; jz = iz + 1; X X sx = SCURVE(x - ix); sy = SCURVE(y - iy); sz = SCURVE(z - iz); X X /* the complement values of sx,sy,sz */ X tx = 1.0 - sx; ty = 1.0 - sy; tz = 1.0 - sz; X X /* X * interpolate! X */ X m = Hash3d( ix, iy, iz ) & 0xFF; X sum = INCRSUM(m,(tx*ty*tz),(x-ix),(y-iy),(z-iz)); X X m = Hash3d( jx, iy, iz ) & 0xFF; X sum += INCRSUM(m,(sx*ty*tz),(x-jx),(y-iy),(z-iz)); X X m = Hash3d( ix, jy, iz ) & 0xFF; X sum += INCRSUM(m,(tx*sy*tz),(x-ix),(y-jy),(z-iz)); X X m = Hash3d( jx, jy, iz ) & 0xFF; X sum += INCRSUM(m,(sx*sy*tz),(x-jx),(y-jy),(z-iz)); X X m = Hash3d( ix, iy, jz ) & 0xFF; X sum += INCRSUM(m,(tx*ty*sz),(x-ix),(y-iy),(z-jz)); X X m = Hash3d( jx, iy, jz ) & 0xFF; X sum += INCRSUM(m,(sx*ty*sz),(x-jx),(y-iy),(z-jz)); X X m = Hash3d( ix, jy, jz ) & 0xFF; X sum += INCRSUM(m,(tx*sy*sz),(x-ix),(y-jy),(z-jz)); X X m = Hash3d( jx, jy, jz ) & 0xFF; X sum += INCRSUM(m,(sx*sy*sz),(x-jx),(y-jy),(z-jz)); X X sum = sum + 0.5; /* range at this point -0.5 - 0.5... */ X X if (sum < 0.0) X sum = 0.0; X if (sum > 1.0) X sum = 1.0; X X return (sum); X } X X X/* X Vector-valued version of "Noise" X*/ X Xvoid DNoise(result, x, y, z) X VECTOR *result; X DBL x, y, z; X { X register long ix, iy, iz, jx, jy, jz; X DBL px, py, pz, s; X DBL sx, sy, sz, tx, ty, tz; X short m; X X Calls_To_DNoise++; X /* ensures the values are positive. */ X x -= MINX; X y -= MINY; X z -= MINZ; X X /* its equivalent integer lattice point. */ X ix = (long)x; iy = (long)y; iz = (long)z; X jx = ix+1; jy = iy + 1; jz = iz + 1; X X sx = SCURVE(x - ix); sy = SCURVE(y - iy); sz = SCURVE(z - iz); X X /* the complement values of sx,sy,sz */ X tx = 1.0 - sx; ty = 1.0 - sy; tz = 1.0 - sz; X X /* X * interpolate! X */ X m = Hash3d( ix, iy, iz ) & 0xFF; X px = x-ix; py = y-iy; pz = z-iz; X s = tx*ty*tz; X result->x = INCRSUM(m,s,px,py,pz); X result->y = INCRSUM(m+4,s,px,py,pz); X result->z = INCRSUM(m+8,s,px,py,pz); X X m = Hash3d( jx, iy, iz ) & 0xFF; X px = x-jx; X s = sx*ty*tz; X result->x += INCRSUM(m,s,px,py,pz); X result->y += INCRSUM(m+4,s,px,py,pz); X result->z += INCRSUM(m+8,s,px,py,pz); X X m = Hash3d( jx, jy, iz ) & 0xFF; X py = y-jy; X s = sx*sy*tz; X result->x += INCRSUM(m,s,px,py,pz); X result->y += INCRSUM(m+4,s,px,py,pz); X result->z += INCRSUM(m+8,s,px,py,pz); X X m = Hash3d( ix, jy, iz ) & 0xFF; X px = x-ix; X s = tx*sy*tz; X result->x += INCRSUM(m,s,px,py,pz); X result->y += INCRSUM(m+4,s,px,py,pz); X result->z += INCRSUM(m+8,s,px,py,pz); X X m = Hash3d( ix, jy, jz ) & 0xFF; X pz = z-jz; X s = tx*sy*sz; X result->x += INCRSUM(m,s,px,py,pz); X result->y += INCRSUM(m+4,s,px,py,pz); X result->z += INCRSUM(m+8,s,px,py,pz); X X m = Hash3d( jx, jy, jz ) & 0xFF; X px = x-jx; X s = sx*sy*sz; X result->x += INCRSUM(m,s,px,py,pz); X result->y += INCRSUM(m+4,s,px,py,pz); X result->z += INCRSUM(m+8,s,px,py,pz); X X m = Hash3d( jx, iy, jz ) & 0xFF; X py = y-iy; X s = sx*ty*sz; X result->x += INCRSUM(m,s,px,py,pz); X result->y += INCRSUM(m+4,s,px,py,pz); X result->z += INCRSUM(m+8,s,px,py,pz); X X m = Hash3d( ix, iy, jz ) & 0xFF; X px = x-ix; X s = tx*ty*sz; X result->x += INCRSUM(m,s,px,py,pz); X result->y += INCRSUM(m+4,s,px,py,pz); X result->z += INCRSUM(m+8,s,px,py,pz); X } X XDBL Turbulence (x, y, z) X DBL x, y, z; X { X register DBL pixelSize = 0.1; X register DBL t = 0.0; X register DBL scale, value; X X for (scale = 1.0 ; scale > pixelSize ; scale *= 0.5) { X value = Noise (x/scale, y/scale, z/scale); X t += FABS (value) * scale; X } X return (t); X } X Xvoid DTurbulence (result, x, y, z) X VECTOR *result; X DBL x, y, z; X { X register DBL pixelSize = 0.01; X register DBL scale; X VECTOR value; X X result -> x = 0.0; X result -> y = 0.0; X result -> z = 0.0; X X value.x = value.y = value.z = 0.0; X X for (scale = 1.0 ; scale > pixelSize ; scale *= 0.5) { X DNoise(&value, x/scale, y/scale, z/scale); X result -> x += value.x * scale; X result -> y += value.y * scale; X result -> z += value.z * scale; X } X } X XDBL cycloidal (value) X DBL value; X { X X if (value >= 0.0) X return (sintab [(int)((value - floor (value)) * SINTABSIZE)]); X else X return (0.0 - sintab [(int)((0.0 - (value + floor (0.0 - value))) X * SINTABSIZE)]); X } X X XDBL Triangle_Wave (value) X DBL value; X { X register DBL offset; X X if (value >= 0.0) offset = value - floor(value); X else offset = value - (-1.0 - floor(FABS(value))); X X if (offset >= 0.5) return (2.0 * (1.0 - offset)); X else return (2.0 * offset); X } X X Xint Bozo (x, y, z, Object, Colour) XDBL x, y, z; XOBJECT *Object; XCOLOUR *Colour; X { X register DBL noise, turb; X COLOUR New_Colour; X VECTOR BozoTurbulence; X X X if ((turb = Object->Object_Texture->Turbulence) != 0.0) X { X DTurbulence (&BozoTurbulence, x, y, z); X x += BozoTurbulence.x * turb; X y += BozoTurbulence.y * turb; X z += BozoTurbulence.z * turb; X } X X noise = Noise (x, y, z); X X if (Object -> Object_Texture->Colour_Map != NULL) { X Compute_Colour (&New_Colour, Object->Object_Texture->Colour_Map, noise); X Colour -> Red += New_Colour.Red; X Colour -> Green += New_Colour.Green; X Colour -> Blue += New_Colour.Blue; X Colour -> Alpha += New_Colour.Alpha; X return (0); X } X X if (noise < 0.4) { X Colour -> Red += 1.0; X Colour -> Green += 1.0; X Colour -> Blue += 1.0; X return (0); X } X X if (noise < 0.6) { X Colour -> Green += 1.0; X return (0); X } X X if (noise < 0.8) { X Colour -> Blue += 1.0; X return (0); X } X X Colour -> Red += 1.0; X return (0); X } X Xint marble (x, y, z, Object, colour) X DBL x, y, z; X OBJECT *Object; X COLOUR *colour; X { X register DBL noise, hue; X COLOUR New_Colour; X X noise = Triangle_Wave(x + Turbulence(x, y, z) * Object -> Object_Texture->Turbulence); X X if (Object -> Object_Texture->Colour_Map != NULL) X { X Compute_Colour (&New_Colour, Object->Object_Texture->Colour_Map, noise); X colour -> Red += New_Colour.Red; X colour -> Green += New_Colour.Green; X colour -> Blue += New_Colour.Blue; X colour -> Alpha += New_Colour.Alpha; X return (0); X } X X if (noise < 0.0) X { X colour -> Red += 0.9; X colour -> Green += 0.8; X colour -> Blue += 0.8; X } X else if (noise < 0.9) X { X colour -> Red += 0.9; X hue = 0.8 - noise * 0.8; X colour -> Green += hue; X colour -> Blue += hue; X } X return (0); X } X X Xvoid ripples (x, y, z, Object, Vector) X DBL x, y, z; X OBJECT *Object; X VECTOR *Vector; X { X register int i; X VECTOR point; X register DBL length, scalar, index; X X for (i = 0 ; i < NUMBER_OF_WAVES ; i++) { X point.x = x; X point.y = y; X point.z = z; X VSub (point, point, Wave_Sources[i]); X VDot (length, point, point); X if (length == 0.0) X length = 1.0; X X length = sqrt(length); X index = length*Object->Object_Texture->Frequency X + Object -> Object_Texture->Phase; X scalar = cycloidal (index) * Object -> Object_Texture->Bump_Amount; X VScale (point, point, scalar/length/(DBL)NUMBER_OF_WAVES); X VAdd (*Vector, *Vector, point); X } X VNormalize (*Vector, *Vector); X } X Xvoid waves (x, y, z, Object, Vector) X DBL x, y, z; X OBJECT *Object; X VECTOR *Vector; X { X register int i; X VECTOR point; X register DBL length, scalar, index, sinValue ; X X for (i = 0 ; i < NUMBER_OF_WAVES ; i++) { X point.x = x; X point.y = y; X point.z = z; X VSub (point, point, Wave_Sources[i]); X VDot (length, point, point); X if (length == 0.0) X length = 1.0; X X length = sqrt(length); X index = (length * Object -> Object_Texture->Frequency * frequency[i]) X + Object -> Object_Texture->Phase; X sinValue = cycloidal (index); X X scalar = sinValue * Object -> Object_Texture->Bump_Amount / X frequency[i]; X VScale (point, point, scalar/length/(DBL)NUMBER_OF_WAVES); X VAdd (*Vector, *Vector, point); X } X VNormalize (*Vector, *Vector); X } X Xint wood (x, y, z, Object, colour) X DBL x, y, z; X OBJECT *Object; X COLOUR *colour; X { X register DBL noise, length; X VECTOR WoodTurbulence; X VECTOR point; X COLOUR New_Colour; X X DTurbulence (&WoodTurbulence, x, y, z); X X point.x = cycloidal((x + WoodTurbulence.x) X * Object -> Object_Texture->Turbulence); X point.y = cycloidal((y + WoodTurbulence.y) X * Object -> Object_Texture->Turbulence); X point.z = 0.0; X X point.x += x; X point.y += y; X point.z += z; X X VLength (length, point); X X noise = Triangle_Wave(length); X X if (Object -> Object_Texture->Colour_Map != NULL) { X Compute_Colour (&New_Colour, Object->Object_Texture->Colour_Map, noise); X colour -> Red += New_Colour.Red; X colour -> Green += New_Colour.Green; X colour -> Blue += New_Colour.Blue; X colour -> Alpha += New_Colour.Alpha; X return (0); X } X X if (noise > 0.6) { X colour -> Red += 0.4; X colour -> Green += 0.133; X colour -> Blue += 0.066; X } X else { X colour -> Red += 0.666; X colour -> Green += 0.312; X colour -> Blue += 0.2; X } X return (0); X } X X Xvoid checker (x, y, z, Object, colour) X DBL x, y, z; X OBJECT *Object; X COLOUR *colour; X { X int brkindx; X X brkindx = (int) FLOOR(x) + (int) FLOOR(z); X X if (brkindx & 1) X *colour = Object -> Object_Texture->Colour1; X else X *colour = Object -> Object_Texture->Colour2; X return; X } X X/* X Ideas garnered from SIGGRAPH '85 Volume 19 Number 3, "An Image Synthesizer" X By Ken Perlin. X*/ X X X/* X With a little reflectivity and brilliance, can look like organ pipe X metal. With tiny scaling values can look like masonry or concrete. X Works with color maps, supposedly. (?) X*/ X Xvoid spotted (x, y, z, Object, Colour) X DBL x, y, z; X OBJECT *Object; X COLOUR *Colour; X { X register DBL noise; X COLOUR New_Colour; X X noise = Noise (x, y, z); X X if (Object -> Object_Texture->Colour_Map != NULL) X { X Compute_Colour (&New_Colour, Object->Object_Texture->Colour_Map, noise); X Colour -> Red += New_Colour.Red; X Colour -> Green += New_Colour.Green; X Colour -> Blue += New_Colour.Blue; X Colour -> Alpha += New_Colour.Alpha; X return; X } X X Colour -> Red += noise; /* "white (1.0) * noise" */ X Colour -> Green += noise; X Colour -> Blue += noise; X X return; X } X Xvoid bumps (x, y, z, Object, normal) X DBL x, y, z; X OBJECT *Object; X VECTOR *normal; X { X VECTOR bump_turb; X X if (Object -> Object_Texture->Bump_Amount == 0.0) X return; /* why are we here?? */ X X DNoise (&bump_turb, x, y, z); /* Get Normal Displacement Val. */ X VScale(bump_turb, bump_turb, Object->Object_Texture->Bump_Amount); X VAdd (*normal, *normal, bump_turb); /* displace "normal" */ X VNormalize (*normal, *normal); /* normalize normal! */ X return; X } X X/* X dents is similar to bumps, but uses noise() to control the amount of X dnoise() perturbation of the object normal... X*/ X Xvoid dents (x, y, z, Object, normal) X DBL x, y, z; X OBJECT *Object; X VECTOR *normal; X { X VECTOR stucco_turb; X DBL noise; X X if (Object -> Object_Texture->Bump_Amount == 0.0) X return; /* why are we here?? */ X X noise = Noise (x, y, z); X X noise = noise * noise * noise * Object->Object_Texture->Bump_Amount; X X DNoise (&stucco_turb, x, y, z); /* Get Normal Displacement Val. */ X X VScale (stucco_turb, stucco_turb, noise); X VAdd (*normal, *normal, stucco_turb); /* displace "normal" */ X VNormalize (*normal, *normal); /* normalize normal! */ X return; X } X X Xvoid agate (x, y, z, Object, colour) X DBL x, y, z; X OBJECT *Object; X COLOUR *colour; X { X register DBL noise, hue; X COLOUR New_Colour; X X noise = cycloidal(1.3 * Turbulence(x, y, z) + 1.1 * z) + 1; X noise *= 0.5; X noise = pow(noise, 0.77); X X if (Object -> Object_Texture->Colour_Map != NULL) X { X Compute_Colour (&New_Colour, Object->Object_Texture->Colour_Map, noise); X colour -> Red += New_Colour.Red; X colour -> Green += New_Colour.Green; X colour -> Blue += New_Colour.Blue; X colour -> Alpha += New_Colour.Alpha; X return; X } X X hue = 1.0 - noise; X X if (noise < 0.5) X { X colour -> Red += (1.0 - (noise / 10)); X colour -> Green += (1.0 - (noise / 5)); X colour -> Blue += hue; X } X else if (noise < 0.6) X { X colour -> Red += 0.9; X colour -> Green += 0.7; X colour -> Blue += hue; X } X else X { X colour -> Red += (0.6 + hue); X colour -> Green += (0.3 + hue); X colour -> Blue += hue; X } X return; X } X X X/* X Ideas garnered from the April 89 Byte Graphics Supplement on RenderMan, X refined from "The RenderMan Companion, by Steve Upstill of Pixar, (C) 1990 X Addison-Wesley. X*/ X X X/* X wrinkles - This is my implementation of the dented() routine, using X a surface iterative fractal derived from DTurbulence. This is a 3-D vers. X (thanks to DNoise()...) of the usual version using the singular Noise()... X Seems to look a lot like wrinkles, however... (hmmm) X*/ X Xvoid wrinkles (x, y, z, Object, normal) X DBL x, y, z; X OBJECT *Object; X VECTOR *normal; X { X register int i; X register DBL scale = 1.0; X VECTOR result, value; X X if (Object -> Object_Texture->Bump_Amount == 0.0) X return; /* why are we here?? */ X X result.x = 0.0; X result.y = 0.0; X result.z = 0.0; X X for (i = 0; i < 10 ; scale *= 2.0, i++) X { X DNoise(&value, x * scale, y * scale, z * scale); /* * scale,*/ X result.x += FABS (value.x / scale); X result.y += FABS (value.y / scale); X result.z += FABS (value.z / scale); X } X X VScale(result, result, Object->Object_Texture->Bump_Amount); X VAdd (*normal, *normal, result); /* displace "normal" */ X VNormalize (*normal, *normal); /* normalize normal! */ X return; X } X X X/* X Granite - kind of a union of the "spotted" and the "dented" textures, X using a 1/f fractal noise function for color values. Typically used X w/ small scaling values. Should work with colour maps for pink granite... X*/ X X Xvoid granite (x, y, z, Object, Colour) X DBL x, y, z; X OBJECT *Object; X COLOUR *Colour; X { X register int i; X register DBL temp, noise = 0.0, freq = 1.0; X COLOUR New_Colour; X X for (i = 0; i < 6 ; freq *= 2.0, i++) X { X temp = 0.5 - Noise (x * 4 * freq, y * 4 * freq, z * 4 * freq); X temp = FABS(temp); X noise += temp / freq; X } X X if (Object -> Object_Texture->Colour_Map != NULL) X { X Compute_Colour (&New_Colour, Object->Object_Texture->Colour_Map, noise); X Colour -> Red += New_Colour.Red; X Colour -> Green += New_Colour.Green; X Colour -> Blue += New_Colour.Blue; X Colour -> Alpha += New_Colour.Alpha; X return; X } X X Colour -> Red += noise; /* "white (1.0) * noise" */ X Colour -> Green += noise; X Colour -> Blue += noise; X X return; X } X X/* X Further Ideas Garnered from "The RenderMan Companion" (Addison Wesley) X*/ X X X/* X Color Gradient Texture - gradient based on the fractional values of x, y or X z, based on whether or not the given directional vector is a 1.0 or a 0.0. X Note - ONLY works with colour maps, preferably one that is circular - i.e. X the last defined colour (value 1.001) is the same as the first colour (with X a value of 0.0) in the map. The basic concept of this is from DBW Render, X but Dave Wecker's only supports simple Y axis gradients. X*/ X Xvoid gradient (x, y, z, Object, Colour) X DBL x, y, z; X OBJECT *Object; X COLOUR *Colour; X { X COLOUR New_Colour; X DBL value = 0.0, turb; X VECTOR GradTurbulence; X X if ((turb = Object->Object_Texture->Turbulence) != 0.0) X { X DTurbulence (&GradTurbulence, x, y, z); X x += GradTurbulence.x * turb; X y += GradTurbulence.y * turb; X z += GradTurbulence.z * turb; X } X X if (Object -> Object_Texture->Colour_Map == NULL) X return; X if (Object -> Object_Texture->Texture_Gradient.x != 0.0) X { X x = FABS(x); X value += x - FLOOR(x); /* obtain fractional X component */ X } X if (Object -> Object_Texture->Texture_Gradient.y != 0.0) X { X y = FABS(y); X value += y - FLOOR(y); /* obtain fractional Y component */ X } X if (Object -> Object_Texture->Texture_Gradient.z != 0.0) X { X z = FABS(z); X value += z - FLOOR(z); /* obtain fractional Z component */ X } X value = ((value > 1.0) ? fmod(value, 1.0) : value); /* clamp to 1.0 */ X Compute_Colour(&New_Colour, Object->Object_Texture->Colour_Map, value); X Colour -> Red += New_Colour.Red; X Colour -> Green += New_Colour.Green; X Colour -> Blue += New_Colour.Blue; X Colour -> Alpha += New_Colour.Alpha; X return; X } X X/* X 2-D to 3-D Procedural Texture Mapping of a Bitmapped Image onto an Object: X X Simplistic method of object image projection devised by DKB and AAC. X X 1. Transform texture in 3-D space if requested. X 2. Determine local object 2-d coords from 3-d coords by <X Y Z> triple. X 3. Return pixel color value at that position on the 2-d plane of "Image". X 3. Map colour value in Image [0..255] to a more normal colour range [0..1]. X*/ X Xvoid texture_map (x, y, z, Object, colour) X DBL x, y, z; X OBJECT *Object; X COLOUR *colour; X { X /* determine local object 2-d coords from 3-d coords */ X /* "unwrap" object 2-d coord onto flat 2-d plane */ X /* return pixel color value at that posn on 2-d plane */ X X int xcoor, ycoor, index; X TEXTURE *local_texture; X DBL width, height, turb; X VECTOR TextureTurbulence; X X local_texture = Object->Object_Texture; X X if ((turb = local_texture->Turbulence) != 0.0) X { X DTurbulence (&TextureTurbulence, x, y, z); X x += TextureTurbulence.x * turb; X y += TextureTurbulence.y * turb; X z += TextureTurbulence.z * turb; X } X X width = local_texture->Image->width; X height = local_texture->Image->height; X X if (local_texture -> Texture_Gradient.x != 0.0) { X if ((local_texture->Once_Flag) && X ((x < 0.0) || (x > 1.0))) { X *colour = Object -> Object_Colour; X return; X } X X if (local_texture -> Texture_Gradient.x > 0) X xcoor = (int) fmod (x * width, width); X else ycoor = (int) fmod (x * height, height); X } X X if (local_texture -> Texture_Gradient.y != 0.0) { X if ((local_texture->Once_Flag) && X ((y < 0.0) || (y > 1.0))) { X *colour = Object -> Object_Colour; X return; X } X X if (local_texture -> Texture_Gradient.y > 0) X xcoor = (int) fmod (y * width, width); X else ycoor = (int) fmod (y * height, height); X } X X if (local_texture -> Texture_Gradient.z != 0.0) { X if ((local_texture->Once_Flag) && X ((z < 0.0) || (z > 1.0))) { X *colour = Object -> Object_Colour; X return; X } X X if (local_texture -> Texture_Gradient.z > 0) X xcoor = (int) fmod (z * width, width); X else ycoor = (int) fmod (z * height, height); X } X X if (xcoor < 0) X xcoor += local_texture->Image->iwidth; X if (ycoor < 0) X ycoor += local_texture->Image->iheight; X X if ((xcoor >= local_texture->Image->iwidth) || X (ycoor >= local_texture->Image->iheight) || X (xcoor < 0) || (ycoor < 0)) X printf ("Out of range\n"); X X index = (unsigned)ycoor* (unsigned)local_texture->Image->iwidth + X (unsigned)xcoor; X X Make_Colour (colour, (DBL) local_texture->Image->red[index]/255.0, X (DBL) local_texture->Image->green[index]/255.0, X (DBL) local_texture->Image->blue[index]/255.0); X } X END_OF_FILE if test 28884 -ne `wc -c <'src/texture.c'`; then echo shar: \"'src/texture.c'\" unpacked with wrong size! fi # end of 'src/texture.c' fi echo shar: End of archive 8 \(of 10\). cp /dev/null ark8isdone MISSING="" for I in 1 2 3 4 5 6 7 8 9 10 ; do if test ! -f ark${I}isdone ; then MISSING="${MISSING} ${I}" fi done if test "${MISSING}" = "" ; then echo You have unpacked all 10 archives. rm -f ark[1-9]isdone ark[1-9][0-9]isdone else echo You still need to unpack the following archives: echo " " ${MISSING} fi ## End of shell archive. exit 0 -- Mail submissions (sources or binaries) to <amiga@uunet.uu.net>. Mail comments to the moderator at <amiga-request@uunet.uu.net>. Post requests for sources, and general discussion to comp.sys.amiga.