mwang@watmath.UUCP (mwang) (11/21/84)
_U_N_I_V_E_R_S_I_T_Y _O_F _W_A_T_E_R_L_O_O _D_E_P_A_R_T_M_E_N_T _O_F _C_O_M_P_U_T_E_R _S_C_I_E_N_C_E _J_o_i_n_t_l_y _w_i_t_h _D_e_p_a_r_t_m_e_n_t _o_f _C_o_m_b_i_n_a_t_o_r_i_c_s _& _O_p_t_i_m_i_z_a_t_i_o_n _S_E_M_I_N_A_R _A_C_T_I_V_I_T_I_E_S _S_C_I_E_N_T_I_F_I_C _C_O_M_P_U_T_A_T_I_O_N _S_E_M_I_N_A_R - Thursday, November 29, 1984. Prof. H. Wolkowicz of Emory University will speak on ``A Constraint Qualification for an Infinite Dimension- al Linear Program''. TIME: 11:30 AM (Please Note) ROOM: MC 5158 ABSTRACT Constraint qualifications for infinite dimensional pro- grams are often hard to verify. Finite dimensional linear programs always satisfy a constraint qualifica- tion, i.e. the primal optimal value equals the dual op- timal value which is attained. We take advantage of the special structure of linear programming in infinite dimensions and present an easily verifiable constraint qualification. We then obtain a characterization of optimality without any constraint qualification. Ap- plications include a recent explicit solution of a best interpolation problem.