rapaport@ (William J. Rapaport) (12/16/87)
STATE UNIVERSITY OF NEW YORK AT BUFFALO
The Steering Committee of the
GRADUATE STUDIES AND RESEARCH INITIATIVE IN
COGNITIVE AND LINGUISTIC SCIENCES
PRESENTS
DONALD A. NORMAN
Institute for Cognitive Science
University of California, San Diego
THE PSYCHOLOGY OF EVERYDAY THINGS
How do we manage the tasks of everyday life? The traditional answer is
that we engage in problem solving, planning, and thought. How do we
know what to do? Again, the traditional answer is that we learn, in
part through experience, in part through instruction. I suggest that
this view is misleading. Less planning and problem solving is required
than is commonly supposed. Many tasks need never be learned: the
proper behavior is obvious from the start. The problem space for most
everyday tasks is shallow or narrow, not wide and deep as the tradi-
tional approach suggests. The minimization of the problem space occurs
because natural and contrived properties of the environment combine to
constrain the set of possible actions. The effect is as if one had put
the knowledge required to do a thing on the thing itself: the knowledge
is in the world.
I show that seven stages are relevant to the performance of an action,
including three stages for execution of an act, three for evaluation,
and a goal stage. Consideration of the rule of each stage, along with
the principles of natural mappings and natural constraints, leads to a
set of psychological principles for design. Couple these principles
with the suggestion that most real tasks are shallow or narrow, and we
start to have a psychology of everyday things and everyday actions.
The talk itself is meant to be light and enjoyable. However, there are
profound implications for the type of theory one develops for simulating
cognitive computation. There are serious implications for massively
parallel structures (what we call Parallel Distributed Processing or
connectionist approaches), for memory storage and retrieval via descrip-
tions or coarse coding, and, in general, for a central role for pattern
matching, constraint satisficing, and nonsymbolic processing mechanisms
in human cognition. But the main implications of the work are for the
design of understandable and usable objects.
Monday, February 1, 1988
4:00 P.M.
Park 280, Amherst Campus
There will also be an informal evening discussion at a place and time to
be announced. Call Bill Rapaport (Computer Science, (716) 636-3193,
3180) for further information.