koreth@ssyx.ucsc.edu (Steven Grimm) (06/04/89)
Submitted-by: dbrooks@osf.org (David Brooks) Posting-number: Volume 2, Issue 42 Archive-name: fplib20/part02 #!/bin/sh # this is part 2 of a multipart archive # do not concatenate these parts, unpack them in order with /bin/sh # file LIBM.uue continued # CurArch=2 if test ! -r s2_seq_.tmp then echo "Please unpack part 1 first!" exit 1; fi ( read Scheck if test "$Scheck" != $CurArch then echo "Please unpack part $Scheck next!" exit 1; else exit 0; fi ) < s2_seq_.tmp || exit 1 sed 's/^X//' << 'SHAR_EOF' >> LIBM.uue XM/&V5QD7_L&$4!#1=Y(\PV)F'D3/B ;!331@1 U0+5P#35@ ] %&>3?YX M0*w XM-*KBH21&(:6/AR),V"%&&&PXI#\.]%2>AP9X*,!O9A$@7$G$M1700+DQQ=M3v XM0%%D$0#\:,211R")-!Q;*[7TTD1*.J$D/TI*80< 0KCR#Q9U_D.%DE"$%A<Fu XMF6W6&5P ./+?5 '( 50.XZFA)!.D,9$.$%U]%!A)I#DQ#J5> 0,#!+!$!5< t XM,(1ZU*@6F#H H>Z8RE)<OIA: *&2F&K &2Y$.FFE90X !*9;:<KI5SU \8\3s XM VKIU$,8FI'IIKR&- @)"D!!5S[J(*==@#L \T/6T'QPE94C'MG:N#^(T6Zr XM_#Q'@#>,2=""C$AX!UY[9RB@@IU(R'?1/ICL^P\28-#S@ED#*& N%>ZV)@,!q XMDD@$ Q+!U#:OGAB6B[#"6V'1\!,/1PS Q!4'<C$64LP$!88L'"RMPJH!)I+#p XM$$M,<6VW8<C BBV^&*.Z'NK#LXM1_<R/A^@ Y8(9"AA%'A,>&BK1"F<8L"+3o XM1@WP#]08X0%E<&E1B28 +"%7UUT@F%H&C<STN+6'2E2GC@Y;X:.D/4)L)8>]n XM?19Q!@X_$-"<'.X.=C$77;8A ;Y^*&$G%SU'-:@#V-D#ESXT"%'!1?JXL.T9m XM FA 5I:[+7N@5 8(&ID%GP. >>6@:^ZOZR8$/GCA3QR.+P2._P,YT3%Y9@H8l XMQ)#F1<'&@V'($E?)(04C#% @!<V :#)\V[3$ST 752]?0N.:<"-DMI+W[T<k XM2E 5SZ2D$:/J0"<(86I 9P!JD0"M"0^&-J0GQ\(#:@"M<0&@9_)8RT4D,%6j XMY"$+(+A!!%5H! (5^ \& H$-#""-/%)600T PSHR!X8=/&]R$WD9_0 @RHTi XMYR%9K"D &"+#U\X2MK44AR-P\8<DDE4Z W6)#=:X"#[4(41O & 1TPB <@&h XM@ (T\8F0.( ! ##%*E+QBE.$Q "RN$4L3L2+5A2 %\5(1B8N\0 0",:D8C$g XM)4+B 4[48AP/$("0)""+":BC%O58@ D0 $+8$ #0!"7+Y@!#E\@PQOB0HJ0f XM%,"0B'3#'!@9&"! \@MSL$,8V-!(D0#B"Y@<0QC<8!-1.!*3=)##&."0!P @e XMXI1?<$,=VC"'5+X2$H_\PACHD <XE,&5IZRE*M$@!V#BD@UMJ ,; G/+1QXRd XME*.\I0'0J$5J#L":V$RC-M4H+6YFTYO;[*8XJRG.;.*2F@7@YCD=B4XT.K&.c XMV70B"<+I1!9HDYSR#"<YR6G.:X:3FTZDP3_OZ<]O#G2?!=5G0L'I3@ (E*'Cb XM7&A$U9E0?@X4HOTT*$01BM%R>M2@'/VH1RUJT7@>Y8EB=&)*3ZI2E+JTI3!Ea XMJ4Q72M.7SM2F-8UI3F^J4YRZ5*,B#>A%)ZI-H78TI"55*$4S2M2&/G2H))7Hz XM4@D*3J,>M*+^1&HZB;K/K29UJDB5:E$=.E2F@M2?3H1)1^,H47R*]*AB=2(1y XME I5L0*4K' %9U0;JM:R<K6B6^VH7L4:4J!.]:SJ]&I6LZI8IJZSL']U+&/-x XMV5AV1M:C5MTH5O-*57KB]:I@72QBF_K6RX85J.^DJV8ERUK3;M:S\.SL8 W;w XMV:2F=K:N':U;F5!;T8*VMW<-J5Q_&]J&"A< <\5M<<7)UKLF5[5TW>ME6TO2v XMRDJWG9C][&JCZ]O'MK6[OMUN6KF[7:!"%K*T3>]TH>O6OIKWM<H=Z6NK.]KEu XM+O>ZI?TJ<65;5]PF=9VZ_:Y9G_C4[:*7O5G5Q#/A( <ZN&"1=41B D)B@ #8t XM(BX/0$5<P*"!N!R@F%IT@+00QHB0*, )5H@+$L[! 0!8Q2TF@ !Z@,&+?V@1s XM "B(GP-FW*L_Z U5-$"R2"2P2,P!T<"8P06JE% FC%(*;RFQ=,Y9Y22>0(r XM9T""VLY U.9X0P>,-49$L.$;P !T[P@A/J "X .&!<;@G#4= P&!"V^<TNq XMB/-$:%!G;-P9S@@( Q3JK(P9,$:/ R &)!AZ"\V&0S>4 (A%OD//JC.# P8p XMLB,1@"$UC(,0DG8#.I!0#! 0 !"%$,$ A-$K0 B$"]& @ @2$EH#@[")&)o XM098) %T8Y0#9$<(9TN4/0,M9 $QHC0F83 E,'D .&B)!1C3 @OD0UH&F#8 n XM7% B\OCC#1!P6369(C,"M(;<@6E(5ZX!#&=+BR52@ !,BF !8$SAV3IPMQ9Um XMP 8):+L%,,B!M'1 !"#, !@#9T K%3!P-A! VS#X@<#W+>Z$H5LD\#*1";Z0l XMYC7+&P!E ,KGLP *0#A9_[ D!!NK8]<YV:9 9"01 P0[#.0QA\%UXNQ)T('k XM93-;W]"6-K45[N@!\#LNL("XKAG@F,\]G#&>FXD_S( (4Q@XQVO ]#Y38: j XM#[S@1B,-/V A]3<8H =2+X^2]$$:?9"]/&Q0 ,0Y^"-VB#T24M_6&SQ [(H;i XMX.+O8HP";KYNL$P #([P^KZCI44#D 0)XDI(N5N#(3A(?.!^!WS&!S]QHQ<>h XM0S) NT&RXR%YW-H?2V?#V6=ND&[O>O5?9, /8!* V4_$V)!_@L+_T8^!MR&#g XMG=<!V0WR!@J0? I T'F> PV ?M@BZR1?"+Y1WO?ER]D?; #.&ZM#=$SH(+Bf XM)@"@/]:%8 A#5!.QA]-PO7QW-61>;FF./9KCCN;@8^<"H$+&PUVWS"/, .Z2e XM<0?Q?^[W!&&W%?P #3.A?C)B#TOG!A) <F!W%QFT%?80#;GA>@P <S@1%09!d XM<B9'0?S00&R@!26" G G!>%G+N[P,5=@?N@' (( @D @@B2(' C(0?S >%M$c XM$A $C# /V+'@XY7$A!P9VW& '(&)@TQ*"2 '?+@!AH0?B1'A*?A+AQD#S-Pb XM%?X@+3BPA?]@#P.7=2TP$TB& ,U!#_1G?SL7 "2P?^9R?PCS)#.A#0'(& S0a XM''98;@VA@/] #RCD/AQ$#X."@^6A@T3H@T (!MR@AT,(#);2>(\'!1_C=P5Hz XM-!X""R=(?!AA"D:18PS@(9R@)"F'$1S <FOW9&@(B;U2A$, #2V0!.5!$.7!y XM ! #70!D]8$ I@!AXP!7;"#PS@"MA6'F4@(#X1;[0HC+>8 VR @_''BMBFx XM%A#0=EFWC#\X,L"X), P 8P1 ]BV?C^B#+=F,-:'= V!<F]2(A^0'6^ @<Sw XM"!+P!C<P?I.7.W>! %;@$\;&!^DH(RD'#26R$]C'!0>C#W&A!/;(&OCH%E?@v XM$^+Q#^@ =RR0)W;C$YHF$G\X("!@)_B@%#)F)_2@%,87C%EG;!CPCZ3'"6G(u XMAM87A,; <K'6 D@PBSX1!.AP1"B!!(#0%G_P,_I 4A(VRW%?J0=>4XD\;"t XM#R" @#0F+8" 0@)@)S=6'L:F"BII#]T6AFS@ 7G"#V7H%O_PD;G1D3;)$6:)s XM#] '$R"P$ O8%2* @."0"BT0!.6!'?20+TU9'NIQ,?Q@+NU2;BX " LI$A>#r XM#R(' T'!!F2PF(U9 HT) )?$8&G@!J:$2ZBD2JQD3(\D3&Q0!@713)A$F6Y q XM!V8@FL+D!JN4!\UT2&/0!ANA1:T)!VY0!G AFXYT2,FT3+B)F8?$!G3P!C8Qp XMFW-0!V(@+=+46L$55_)E7(KE1$C44-%)6OA5G? %7")U6N1U5="I4-T97\%5o XM68(U5M898-BEG$\TG=_96>O957<UG0W% /E1-(#4>MI4.MYG\R51.])4/KIn XM5NKY17?58K15GM3978&5G>&5GF,%GQ'5GN!U6*1EG_S9H-M)7^MU7A'*GA7:m XM4/,T8%75H0Q*H?(Y5?DIHOED4@Y*6>CY6 GJ72 J+?H)H1(:HP"*G1J*7<VUl XMG_;D7Y.UGP666T)Z6R/Z1 2ZGP%:GSBZH>8Y3M8EGMF9H#OJ5CUZH=<Y8/]Yk XMG?J)GA)*I!8UHP;16Q"ZI9:EG6:*5@*ZGT=Z7$I*70*670XJ75\JHO'I64EZj XMH4_JIEA*IQGZ6MUIH/A%IO_%I#):H0#6IRQ*GKXU7O?UIN<)18L* .[%52\:i XMJ3 JI(,:7]K9J#:*H._56E.*II<*5I6*76?JHQ*:H]@Y7"8* +QE3@[P3',@h XM2F[P8'%! %4P5Y!081=V%+*P81TV$3D&"0M@!"96CG#& 7HET,&"'%AE_CPg XM9!@P!06! 85X,,S #,W0 W'X,8?)B' & >XRF-UZCZ<!F-XJ(_S@. "@/G%Af XM",WZK&.I:PI *)PP9-M@#OW0CMI#C%K$<!30!AY@+N8XENDZE@3@KPG3KF" e XM#?1Z!EHP9-FZK1N99Q0 C.VJ!( @$ 1;K@SYK=X0A^AZCWZI:V^!9^7A+GZYd XME^VB9G4P9* 0%T3PAV! "D-6"0*0#V) L_Q!!I<TJZ-TF<X$!\ IG)RIF\J$c XMG+D)!V% !HW9FP5P2+5YFP.0G$3E1"7*H9=J6U?;K@A6IZW:IAQZI*!:II:Zb XM57%4JOLIMFYUJ'.ZM6_J5FP[7V@ZMZ.5HA,*15)J64 &!Z\)#TMW$AM%)KFZ\;&!P 25,[N[B+G>-97MWDy XMFF_@!G9@JZ5 -KE*N+TJ *^$N,$: !U&K(U[8E9 $^R* &R@ D8!"-G1E&[1x XME_EH;!I 0?Y ,:]V,?JPET?ILJ2H?2BF8N> 3BV?$RS$64& !B0=38 $Z Qw XM:0;P:5,P!/]# #1F8TB$!,, "/C!#;?VEP-@ LO'8U!Y!BJ@ (, E:D1!C[Pv XM?NK:._R 067AK%ID A]PC0BH'F @#QFL 1Q\E\'(!K+& W]@P/S#LF! #>^[u XM%_&+%\M7P#=V&]Z+ $^I17_P$$ !!&W0;(-0OZYJ9OGKLD !!F] '#P#V#@t XM#I@@$4 VRY$$30%>"P"NC!B)!4M*5T2H=4!\%YQB*A Y!D!L&Y3)<IE&\<s XMG'4 '.L#+YKMO:EH)^ZI.!96B&J7X&:782\H#L:R*BJJ*FZH8F\G_@5R(><r XM7H=$!FE0O(LDN P8;M:N!.!!,"JM,3:8HXK D.P$9-[NG! I1[!FX@! $@q XM! )@ CP@1EHD"X)0!E(R")(@".*@".*P"&8@#^V "$H0"*!#!8 @!W] @$@p XM#*=Q ,1P&@L@"4(@#1(1!!J[!@0P!4$ #8 0B=-"!@0@#@LA!=H,9 3,!UVHo XM!$'P!B(@"Q+Q!VY@ 1 0 !(0S11 S;7PS##A:@%@ @FP9E7,S&! #AN1PI5\n XMR;?KFW!@R7."QQ2FJ<RI7[_[6Y'L61;-7W^<T1AU2$U+!H$;89NLO'$1 +@0m XMRK<<$HQK8@JCN@"P *9, D1@NI)+N3EF!W\@/;,@ &I !<"P:@,P3[\JNK( l XM"&\@:YTK -)C! \' )80RW1B83"1 6[@ >:0"@N!S""P!@@P!0+P!B SFJ k XM#^(,"$J@SBK1A1 @ ,CPSX! *- B=6!PEM#T$M#$,- $4M $=M=ISKN=*Sj XM$ %@ 70RU;90U6S #%E=&V1@ .8, %(@ &O@ &=-!K 0V9.M!K)0Q73P!R)Wi XM2,5YG%H$NZ)MG+R+2R#MM U- 8 22&=VJY]3PD:HQ=]V_N%VX]<7WZ%V^.Yh XMT8-L5]N$M&PPTDG$R;QZTH:@T@,0L\2J B8& D,@ D1 D5@TZF, )]M @) g XM#)Z!!\80!&? !]0P!)2@Q4(PU38@%\& !$/P$#H0 $A *4&@#," #,& #8.@f XM#81 !@A@ P6@ [0'!@0 X$)0!$A0!,!0,85 SIHM!-P,SE,@!)==SN<L!&E-e XM=4HP!&:PSNTL!&)-"_-\U6V=SVFTSS'=T\0 UP)0P2B0 ": 2-N/3PV55,d XIQL1-!Q+MT+N9VE$+!SU>VA.-T<*MR+U]Y,!]Y,95Y-#5T5>JY($!&@#Pc X b Xend SHAR_EOF chmod 0600 LIBM.uue || echo "restore of LIBM.uue fails" sed 's/^X//' << 'SHAR_EOF' > LOG.C && X/* LOG functions for Sozobon C. */ X/* Copyright = David Brooks, 1989 All Rights Reserved */ X X#include <fplib.h> X#include <errno.h> X X/* LOG: */ X/* */ X/* This yanks out the exponent, performs a polynomial valid over +/- */ X/* sqrt(2), and adds the scaled exponent back in. Domain error on */ X/* arguments <= 0. */ X Xfloat log(a) fstruct a; X{ register float t1, t2, t3; X static fstruct nhuge = {0xFFFFFFFFL}; /* Largest negative */ X X if (a.f <= 0.0) X { errno = EDOM; /* Impossible really */ X return nhuge.f; X } X X if (a.f < M_SQRT2 && a.f > M_SQRT1_2) X { t3 = 0.0; /* arg between sqrt(2) and sqrt(2)/2 */ X t2 = (t1 = a.f - 1.0) + 2.0; X } X else X { t3 = (float)(((int)a.sc[3] << 1) - 0x81) * 0.34657359; X /* ...(log2(a) * 2 + 1) * ln(2)/2 */ X a.sc[3] = BIAS; /* Scale back to range */ X t2 = a.f + M_SQRT1_2; X t1 = a.f - M_SQRT1_2; X } X X t1 /= t2; X t2 = t1 * t1; X X return t3 + t1 * (2.0000008 + t2 * (0.66644078 + t2 * 0.41517739)); X} X X/* LOG10 is easy. */ X Xfloat log10(a) float a; X{ X return M_LOG10E * log(a); X} SHAR_EOF chmod 0600 LOG.C || echo "restore of LOG.C fails" sed 's/^X//' << 'SHAR_EOF' > MATH.H && X/* X * MATH.H Math function declarations X */ X X#ifndef MATH_H X#define MATH_H X Xextern float sin(), cos(), tan(); Xextern float asin(), acos(), atan(), atan2(); Xextern float exp(), sinh(), cosh(), tanh(); Xextern float log(), log10(), pow(); Xextern float sqrt(); Xextern float ceil(), floor(), fabs(); Xextern float ldexp(), frexp(), modf(), fmod(); Xextern float atof(); X X/* Some useful constants, generally to 8-9 digits */ X X#define M_E 2.71828183 X#define M_LOG2E 1.44269504 X#define M_LOG10E 0.43429448 X#define M_LN2 0.69314718 X#define M_LN10 2.30258509 X#define M_PI 3.14159265 X#define M_PI_2 1.570796327 X#define M_PI_4 0.785398163 X#define M_1_PI 0.318309886 X#define M_2_PI 0.636619772 X#define M_2_SQRTPI 1.128379167 X#define M_SQRT2 1.41421356 X#define M_SQRT1_2 0.70710678 X/* This is what the compiler should turn into 0xFFFFFF7F... */ X#define MAXFLOAT ((float)9.2233715e+18) X#define HUGE MAXFLOAT X X#define _ABS(x) ((x) < 0 ? -(x) : (x)) X X#endif MATH_H SHAR_EOF chmod 0600 MATH.H || echo "restore of MATH.H fails" sed 's/^X//' << 'SHAR_EOF' > POW.C && X/* POW function for Sozobon C. */ X/* Copyright = David Brooks, 1989 All Rights Reserved */ X/* */ X/* This uses exp and log in the obvious way. A domain error occurs if */ X/* a=0 and p<=0, or a<0 and p is not integral. */ X X#include <fplib.h> X#include <errno.h> X Xfloat pow(a, p) Xfstruct a, p; X{ fstruct r; X register long pint; X register int sign = 0; X X if (a.sc[3] == 0 && p.sc[3] <= 0) X { errno = EDOM; X return 0.0; X } X X if (a.sc[3] < 0) /* ...if a.f < 0 */ X { pint = (long)p.f; X if ((float)pint != p.f) /* ... if nonintegral */ X errno = EDOM; X sign = pint & 1; /* ... carry on regardless */ X a.sc[3] &= EXP_MASK; X } X X r.f = exp(log(a.f) * p.f); X if (sign && (r.sc[3] != 0)) X r.sc[3] |= 0x80; X return r.f; X} SHAR_EOF chmod 0600 POW.C || echo "restore of POW.C fails" sed 's/^X//' << 'SHAR_EOF' > README && X FLOATING POINT LIBRARY FOR SOZOBON C X X Rev 2.0 -- prepared April 30, 1989 X XThe files contained in this archive are a set of floating point Xfunctions for Sozobon C. We provide: X X sqrt exp floor X sin sinh modf X cos cosh fmod X tan tanh fabs X atan log ldexp X atan2 log10 frexp X asin pow atof X acos ceil math.h X Xand modified versions of: X X fpcmp fpadd fpmul X fpdiv fp_prt X XThese are available in source. There is also a new LIBM.A that has the Xnew routines included (and the other routines re-arranged to remove the Xneed to scan the library twice). X XThe complete archive also contains design notes, release notes for Xrelease 2.0, and a brief set of specifications. X XOnly LIBM.A and MATH.H are needed for normal use of the library. XLIBM.A should go in your LIB directory, and MATH.H in your INCLUDE Xdirectory. X XThese routines may be used without restriction, but I retain the copyright Xon them, and the Only True Upgrades will be those I make. If you have any Ximprovements, please send them to me. X XDavid W. Brooks X36 Elm Street XMedfield, MA 02052, USA X Xdbrooks@osf.org Xuunet!osf.org!brooks SHAR_EOF chmod 0600 README || echo "restore of README fails" sed 's/^X//' << 'SHAR_EOF' > RNOTES && X Release notes for FPLIB Release 2.0 X =================================== X XThis release contains fixes to FPLIB release 1.0, and fixes to the Xstandard Sozobon release 1.0 floating support. X XIn the standard support: X X- The original floating point add/subtract, multiply, and divide have X been rewritten for better speed and accuracy. X X- Bugs in the floating version of printf have been fixed. X XThe remaining information is of interest only if you have been using XFPLIB release 1.0. The following changes have been made: X X- MATH.H has been expanded to provide symbolic definitions of some X common constants. X X- A few minor bugs have been fixed: X X * Some routines could return -0.0; the sign has been corrected. X X * Some routines could return a number with a biased exponent of X zero; they now return true 0.0. X X * Out of range results are now signaled by ERANGE, not EDOM. X X * frexp() returned an incorrect value on overflow, and ldexp() X didn't handle overflow or underflow correctly. SHAR_EOF chmod 0600 RNOTES || echo "restore of RNOTES fails" sed 's/^X//' << 'SHAR_EOF' > SPECS && XFPLIB implements the set of routines described in K&R, Second Edition, Xpp 250-251. In the following descriptions, x and y are of type float, Xand n is of type int. All functions (including ceil and floor) return Xa value of type float. X XRemember to declare any routine you use, either explicitly or by Xincluding MATH.H. If you don't, the compiler will assume the function Xreturns a value of type int, and will perform an unwanted conversion. X XA domain error occurs if an argument is outside the range for which Xthe function is defined (e.g. sqrt(-1.0)). In this case, errno is Xset to EDOM and the result is usually 0.0. A range error occurs if Xthe result cannot be represented as a float (e.g. exp(100.0)). In Xthis case, errno is set to ERANGE and the result is HUGE_VAL. If the Xfunction succeeds, errno is not zeroed. X XIn all trigonometric functions, angles are expressed in radians. Pi Xradians equal 180 degrees. X XAll routines work in all three resolutions :-) X Xsin(x) sine of x. Xcos(x) cosine of x. Xtan(x) tangent of x. Xasin(x) inverse sine of x in the range -pi/2 to pi/2. Xacos(x) inverse cosine of x in the range 0 to pi. Xatan(x) inverse tangent of x in the range -pi/2 to pi/2. Xatan2(x,y) inverse tangent of x/y in the range -pi to pi. The X angle is chosen so that x has the sign of the sine and X y has the sign of the cosine. Xsinh(x) hyperbolic sine of x. Xcosh(x) hyperbolic cosine of x. Xtanh(x) hyperbolic tangent of x. Xexp(x) e to the power of x. Xlog(x) logarithm, base e, of x: x > 0. Xlog10(x) logarithm, base 10, of x: x > 0. Xpow(x,y) x to the yth power. A domain error occurs if x=0 and X y<=0, or if x<0 and y is not an integer. Xsqrt(x) square root of x: x>=0. Xceil(x) smallest whole number not less than x. Xfloor(x) largest whole number not greater than x. Xfabs(x) absolute value of x. Xldexp(x,n) x, times 2 to the nth power. Xfrexp(x,pn) splits x into a fraction between 0.5 and 0.999..., which X is the returned value, and a power of 2, which is stored X in the int pointed to by pn. If x is 0, both parts of X the result are 0. Xmodf(x,py) splits x into integral and fractional parts, both with X the same sign as x. The fraction is returned and the X integral part is stored in the float pointed to by py. Xfmod(x,y) remainder of x/y, with the same sign as y. Xatof(ps) converts the string ps into a float. X XThe file MATH.H also defines several mathematical constants. SHAR_EOF chmod 0600 SPECS || echo "restore of SPECS fails" sed 's/^X//' << 'SHAR_EOF' > SQRT.C && X/* SQRT function for Sozobon C. */ X/* Copyright = David Brooks, 1989 All Rights Reserved */ X/* */ X/* The method is from Hart et al: "Computer Approximations". We reduce */ X/* the range to [0.25..1.0], then apply the polynomial: */ X/* 0.25927688 + 1.0520212n - 0.31632214n^2, giving 2.3 digits */ X/* approximation. Then we do two Newton's iterations (giving ~9 digits */ X/* precision). */ X/* */ X/* A negative argument gives a return value of 0.0 and sets EDOM. */ X X#include <fplib.h> X#include <errno.h> X X/* Sadly we can't use register for objects of type fstruct. */ X Xfloat sqrt(n) Xfstruct n; X{ register int exp; /* Separate unbiased exponent. */ X fstruct s; X X if (n.sc[3] == 0) /* Check for 0.0 */ X return 0.0; X X if ((exp = n.sc[3]) < 0) /* Test argument's sign. */ X { errno = EDOM; X return 0.0; X } X X exp -= BIAS; /* Get unbiased exponent. */ X if (exp & 1) X { n.sc[3] = BIAS-1; /* Convert to 0.25..0.5. */ X ++exp; X } X else X n.sc[3] = BIAS; /* Or convert to 0.5..1. */ X X s.f = 0.25927688 + n.f * (1.0520212 + n.f * -0.31632214); X X s.f = s.f + n.f / s.f; /* One Newton. */ X s.sc[3] -= 1; /* (here's the divide by 2). */ X s.f = s.f + n.f / s.f; /* The other Newton. */ X s.sc[3] += ((unsigned int)exp >> 1) - 1; X /* Divide by 2 and insert X half the original exponent. */ X return s.f; X} SHAR_EOF chmod 0600 SQRT.C || echo "restore of SQRT.C fails" sed 's/^X//' << 'SHAR_EOF' > TRIG.C && X/* SIN, COS, and TAN functions for Sozobon C. */ X/* Copyright = David Brooks, 1989 All Rights Reserved */ X X#include <fplib.h> X#include <errno.h> X X/* SIN: X/* */ X/* The method is from Hart et al: "Computer Approximations". It reduces */ X/* the range to 0..pi/2, scaled to 0..1, and applies: */ X/* 1.57079629t - 0.64596336t^3 + 0.0796884805t^5 - 0.0046722279t^7 */ X/* + 0.00015082056t^9 (precision of 8.5 digits) and */ X/* finally fixes the sign. */ X/* */ X/* MODIFICATIONS: */ X/* DWB 03/15/89 Don't try to negate x if it's zero. */ X/* DWB 04/30/89 Fix cos(0.0) */ X Xfloat sin(a) fstruct a; X{ register float t, ipart, tsq; X fstruct x; X register unsigned long tint; X register char sign; X X sign = a.sc[3] & 0x80; X a.sc[3] ^= sign; /* sin(negative x) = -sin(-x) */ X X/* If the argument is huge, the result is rather arbitrary -- and, */ X/* besides, the following code will break. */ X X if (a.sc[3] >= (BIAS + MANT_BITS)) X { errno = ERANGE; X return 0.0; X } X X t = a.f * M_2_PI; /* Express in quarter-turns */ X X/* Get integer part and fraction. Optimise the common case, in the X first quadrant */ X X if (t <= 1.0) X tint = 0L; X else X { tint = t; /* tint = whole quarterturns */ X ipart = (float)tint; X t = (tint & 1)?ipart - t + 1.0:t - ipart; /* Get fraction */ X } X tsq = t * t; X x.f = t * (1.57079629 + tsq * (-0.64596336 + tsq * (0.0796884805 X + tsq * (-0.46722279e-2 + tsq * 0.15082056e-3)))); X X if (x.sc[3] != 0) /* Don't negate zero! */ X { if ((int)tint & 2) /* Quadrants 3 and 4 */ X x.sc[3] |= 0x80; /* Set negative */ X if (sign != 0) X x.sc[3] ^= 0x80; /* Negate */ X } X X return x.f; X} X X/* COS: */ X/* */ X/* Although approximations are available, this will do fine. I'm not */ X/* proud of the hack to fix the only rational argument with a rational */ X/* result, but then pride is the first deadly sin... */ X Xfloat cos(a) float a; X{ X return a==0.0?1.0:sin(M_PI_2 - a); X} X X/* TAN: */ X/* (v-e-r-y s-l-o-w-l-y) */ X Xfloat tan(a) float a; X{ X return sin(a) / sin(M_PI_2 - a); X} SHAR_EOF chmod 0600 TRIG.C || echo "restore of TRIG.C fails" rm -f s2_seq_.tmp echo "You have unpacked the last part" exit 0