[comp.text] PicTeX.shar, part 3 of 3

grunwald@uiucdcsm.cs.uiuc.edu (01/18/88)

This is part 3 of 3 of the PicTeX macros
----------------------------------------------------------------------
        \!yshift=-\!dp
      \else 
        \if B\!orientation 
          \!yshift=\!zpt
        \else 
          \if t\!orientation 
            \!yshift=\!ht
          \fi 
        \fi
      \fi
    \fi
  \fi}
 
 
%  **  \!dimenput{OBJECT} <XDIMEN,YDIMEN> [XY] (XLOC,YLOC)
%  **    This is an internal put routine, similar to \put, except that
%  **    XLOC=distance right from reference point, YLOC=distance up from
%  **    reference point. XLOC and YLOC are dimensions, so this routine
%  **    is completely independent of the current coordinate system. 
%  **    This routine does NOT do ROTATIONS.
\long\def\!dimenput#1#2(#3,#4){%
  \!setputobject{#1}{#2}%
  \!xpos=#3\advance\!xpos by -\!xshift
  \!ypos=#4\advance\!ypos by -\!yshift
  \kern\!xpos\raise\!ypos\box\!putobject\kern-\!xpos%
  \!doaccounting\ignorespaces}
 
 
%  ** The following macros permit the picture drawing routines to be used 
%  ** either in the default "coordinate mode", or in "dimension mode".
%  **   In coordinate mode  \!M(1.5,\!xunit)    expands to  1.5\!xunit
%  **   In dimension  mode  \!M(1.5pt,\!xunit)  expands to  1.5pt
%  ** Dimension mode is useful in coding macros.
%  ** Any special purpose picture macro that sets dimension mode should 
%  ** reset coordinate mode before completion.
%  ** See Subsection 9.2 of the manual.
\def\!setdimenmode{%
  \let\!M=\!M!!\ignorespaces}
\def\!setcoordmode{%
  \let\!M=\!M!\ignorespaces}
\def\!ifcoordmode{%
  \ifx \!M \!M!}
\def\!ifdimenmode{%
  \ifx \!M \!M!!}
\def\!M!#1#2{#1#2} 
\def\!M!!#1#2{#1}
\!setcoordmode
\let\setdimensionmode=\!setdimenmode
\let\setcoordinatemode=\!setcoordmode

%  ** \Xdistance{XCOORD}, \Ydistance{YCOORD}  are the horizontal and
%  **   vertical distances from the origin (0,0) to the point
%  **   (XCOORD,YCOORD)  in the current coordinate system.
%  ** See Subsection 9.2 of the manual.
\def\Xdistance#1{%
  \!M{#1}\!xunit
  \ignorespaces}
\def\Ydistance#1{%
  \!M{#1}\!yunit
  \ignorespaces}

% ** The following macros -- \stack, \line, and \Lines -- are useful for
% **   annotating PiCtures. They can be used outside the \beginpicture ...
% **   \endpicture environment.

% ** \stack [POSITIONING] <LEADING> {VALUESLIST}
% ** Builds a vertical stack of the values in VALUESLIST. Values in
% ** VALUESLIST are separated by commas.  In the resulting stack, values are
% ** centered by default, and positioned flush left (right) if 
% ** POSITIONING = l (r).  Values are separated vertically by LEADING,
% ** which defaults to \stackleading.
% ** See Subsection 2.3 of the manual.
\def\stack{%
  \!ifnextchar[{\!stack}{\!stack[c]}}
\def\!stack[#1]{%
  \let\!lglue=\hfill \let\!rglue=\hfill
  \expandafter\let\csname !#1glue\endcsname=\relax
  \!ifnextchar<{\!!stack}{\!!stack<\stackleading>}}
\def\!!stack<#1>#2{%
  \vbox{\def\!valueslist{}\!ecfor\!value:=#2\do{%
    \expandafter\!rightappend\!value\withCS{\\}\to\!valueslist}%
    \!lop\!valueslist\to\!value
    \let\\=\cr\lineskiplimit=\maxdimen\lineskip=#1%
    \baselineskip=-1000pt\halign{\!lglue##\!rglue\cr \!value\!valueslist\cr}}%
  \ignorespaces}

% ** \lines [POSITIONING] {LINES}
% ** Builds a vertical array of the lines in LINES. Each line in LINES
% ** is terminated by a \cr.  In the resulting array, lines are
% ** centered by default, and positioned flush left (right) if 
% ** POSITIONING = l (r).  The lines in the array are subject to TeX's
% ** usual spacing rules: in particular the baselines are ordinarily an equal
% ** distance apart. The baseline of the array is the baseline of the
% ** the bottom line.
% ** See Subsection 2.3 of the manual.
\def\lines{%
  \!ifnextchar[{\!lines}{\!lines[c]}}
\def\!lines[#1]#2{%
  \let\!lglue=\hfill \let\!rglue=\hfill
  \expandafter\let\csname !#1glue\endcsname=\relax
  \vbox{\halign{\!lglue##\!rglue\cr #2\crcr}}%
  \ignorespaces}

% ** \Lines [POSITIONING] {LINES}
% ** Like \lines, but the baseline of the array is the baseline of the
% ** top line.  See Subsection 2.3 of the manual.
\def\Lines{%
  \!ifnextchar[{\!Lines}{\!Lines[c]}}
\def\!Lines[#1]#2{%
  \let\!lglue=\hfill \let\!rglue=\hfill
  \expandafter\let\csname !#1glue\endcsname=\relax
  \vtop{\halign{\!lglue##\!rglue\cr #2\crcr}}%
  \ignorespaces}


% *********************************************
% *** PLOTTING (Things to do with plotting) ***
% *********************************************
 
% **  User commands
% **    \setplotsymbol ({PLOTSYMBOL} [ORIENTATION] <XSHIFT,YSHIFT>)
% **    \savelinesandcurves on "FILE_NAME"
% **    \dontsavelinesandcurves
% **    \writesavefile {MESSAGE}
% **    \replot {FILE_NAME}
 
% **  Internal command
% **    \!plot(XDIMEN,YDIMEN)
 
% **  \setplotsymbol ({PLOTSYMBOL} [ ] < , >)
% **  Save PLOTSYMBOL away in an hbox for use with curve plotting routines
% **  See Subsection 5.2 of the manual.
\def\setplotsymbol(#1#2){%
  \!setputobject{#1}{#2}
  \setbox\!plotsymbol=\box\!putobject%
  \!plotsymbolxshift=\!xshift 
  \!plotsymbolyshift=\!yshift 
  \ignorespaces}
 
\setplotsymbol({\fiverm .})%       ** initialize plotsymbol
 
 
% **  \!plot is either \!!plot (when no lines and curves are being saved) or
% **                   \!!!plot (when   lines and curves are being saved)
 
% **  \!!plot(XDIMEN,YDIMEN)
% **  Places the current plotsymbol a horizontal distance=XDIMEN-xorigin 
% **    and a vertical distance=YDIMEN-yorigin from the current
% **    reference point.  
\def\!!plot(#1,#2){%
  \!dimenA=-\!plotxorigin \advance \!dimenA by #1%    ** over
  \!dimenB=-\!plotyorigin \advance \!dimenB by #2%    ** up
  \kern\!dimenA\raise\!dimenB\copy\!plotsymbol\kern-\!dimenA%
  \ignorespaces}
 
% **  \!!!plot(XDIMEN,YDIMEN)
% **  Like \!!plot, but also saves the plot location in units of 
% **    scaled point, on file `replotfile'
\def\!!!plot(#1,#2){%
  \!dimenA=-\!plotxorigin \advance \!dimenA by #1%    ** over
  \!dimenB=-\!plotyorigin \advance \!dimenB by #2%    ** up
  \kern\!dimenA\raise\!dimenB\copy\!plotsymbol\kern-\!dimenA%
  \!countE=\!dimenA
  \!countF=\!dimenB
  \immediate\write\!replotfile{\the\!countE,\the\!countF.}%
  \ignorespaces}


% ** \savelinesandcurves on "FILE_NAME"
% **   Switch to save locations used for plotting lines and curves
% **   (No advantage in saving locations for solid lines; however
% **   replotting curve locations speeds things up by a factor of about 4. 
% ** \dontsavelinesandcurves
% **   Terminates \savelinesandcurves. The default.
% ** See Subsection 5.6 of the manual.
\def\savelinesandcurves on "#1" {%
  \immediate\closeout\!replotfile
  \immediate\openout\!replotfile=#1%
  \let\!plot=\!!!plot}

\def\dontsavelinesandcurves {%
  \let\!plot=\!!plot}
\dontsavelinesandcurves

% ** \writesavefile {MESSAGE}
% ** The message is preceded by a "%", so that it won't interfere
% ** with replotting.
% ** See Subsection 5.6 of the manual.
{\catcode`\%=11\xdef\!Commentsignal{%}}
\def\writesavefile#1 {%
  \immediate\write\!replotfile{\!Commentsignal #1}%
  \ignorespaces}

% ** \replot "FILE_NAME"
% **   Replots the locations saved earlier under \savelinesandcurves
% **   on "FILE_NAME"
% ** See Subsection 5.6 of the manual.
\def\replot"#1" {%
  \expandafter\!replot\input #1 /}
\def\!replot#1,#2. {%
  \!dimenA=#1sp
  \kern\!dimenA\raise#2sp\copy\!plotsymbol\kern-\!dimenA
  \futurelet\!nextchar\!!replot}
\def\!!replot{%
  \if /\!nextchar 
    \def\!next{\!finish}%
  \else
    \def\!next{\!replot}%
  \fi
  \!next}
% **************************************************
% ***  PYTHAGORAS  (Euclidean distance function) ***
% **************************************************

% ** User command:
% **   \placehypotenuse for <dimension1> and <dimension2> in <register> 

% ** Internal command:
% **   \!Pythag{X}{Y}{Z}
% **     Input X,Y are dimensions, or dimension registers.
% **     Output Z == sqrt(X**2+Y**2) must be a dimension register.
% **     Assumes that |X|+|Y| < 2048pt (about 28in).
 
% ** Without loss of generality, suppose  x>0, y>0.  Put s = x+y,
% **   z = sqrt(x**2+y**2). Then  z = s*f,  where  f = sqrt(t**2 + (1-t)**2)
% **   = sqrt((1+tau**2)/2), where  t = x/s  and  tau = 2(t-1/2) .
 
% ** Uses the \!divide macro (which uses registers \!dimenA--\!dimenD.
% ** Uses the \!removept macro   (e.g., 123.45pt --> 123.45)
% ** Uses registers \!dimenE--\!dimenI.
\def\!Pythag#1#2#3{%
  \!dimenE=#1\relax                                     
  \ifdim\!dimenE<\!zpt 
    \!dimenE=-\!dimenE 
  \fi%                                            ** dimE = |x|
  \!dimenF=#2\relax
  \ifdim\!dimenF<\!zpt 
    \!dimenF=-\!dimenF 
  \fi%                                            ** dimF = |y|
  \advance \!dimenF by \!dimenE%                  ** dimF = s = |x|+|y|
  \ifdim\!dimenF=\!zpt 
    \!dimenG=\!zpt%                               ** dimG = z = sqrt(x**2+y**2)
  \else 
    \!divide{8\!dimenE}\!dimenF\!dimenE%          ** now dimE = 8t = (8|x|)/s
    \advance\!dimenE by -4pt%                     ** 8tau = (8t-4)*2
      \!dimenE=2\!dimenE%                         **   (tau = 2*t - 1)
    \!removept\!dimenE\!!t%                       ** 8tau, without "pt"
    \!dimenE=\!!t\!dimenE%                        ** (8tau)**2, in pts
    \advance\!dimenE by 64pt%                     ** u = [64 + (8tau)**2]/2
    \divide \!dimenE by 2%                        **   [u = (8f)**2]
    \!dimenH=7pt%                                 ** initial guess g at sqrt(u)
    \!!Pythag\!!Pythag\!!Pythag%                  ** 3 iterations give sqrt(u)
    \!removept\!dimenH\!!t%                       ** 8f=sqrt(u), without "pt"
    \!dimenG=\!!t\!dimenF%                        ** z = (8f)*s/8
    \divide\!dimenG by 8
  \fi
  #3=\!dimenG
  \ignorespaces}

\def\!!Pythag{%                                   ** Newton-Raphson for sqrt
  \!divide\!dimenE\!dimenH\!dimenI%               ** v = u/g
  \advance\!dimenH by \!dimenI%                   ** g <-- (g + u/g)/2
    \divide\!dimenH by 2}

% **  \placehypotenuse for <XI> and <ETA> in <ZETA>
% **  See Subsection 9.3 of the manual.
\def\placehypotenuse for <#1> and <#2> in <#3> {%
  \!Pythag{#1}{#2}{#3}}


% **********************************************
% *** QUADRATIC ARC  (Draws a quadratic arc) ***
% **********************************************
 
% **  Internal command
% **    \!qjoin (XCOORD1,YCOORD1) (XCOORD2,YCOORD2)
 
% **  \!qjoin (XCOORD1,YCOORD1) (XCOORD2,YCOORD2)
% **  Draws an arc starting at the (last) point specified by the most recent
% **  \!qjoin, or \!ljoin, or \!start  and passing through (X_1,Y_1), (X_2,Y_2).
% **  Uses quadratic interpolation in both  x  and  y:  
% **    x(t), 0 <= t <= 1, interpolates  x_0, x_1, x_2  at  t=0, .5, 1
% **    y(t), 0 <= t <= 1, interpolates  y_0, y_1, y_2  at  t=0, .5, 1
 
\def\!qjoin (#1,#2) (#3,#4){%
  \advance\!intervalno by 1
  \!ifcoordmode
    \edef\!xmidpt{#1}\edef\!ymidpt{#2}%
  \else
    \!dimenA=#1\relax \edef\!xmidpt{\the\!dimenA}%
    \!dimenA=#2\relax \edef\!xmidpt{\the\!dimenA}%
  \fi
  \!xM=\!M{#1}\!xunit  \!yM=\!M{#2}\!yunit   \!rotateaboutpivot\!xM\!yM
  \!xE=\!M{#3}\!xunit  \!yE=\!M{#4}\!yunit   \!rotateaboutpivot\!xE\!yE
%
% ** Find coefficients for x(t)=a_x + b_x*t + c_x*t**2
  \!dimenA=\!xM  \advance \!dimenA by -\!xS%   ** dimA = I = xM - xS
  \!dimenB=\!xE  \advance \!dimenB by -\!xM%   ** dimB = II = xE-xM
  \!xB=3\!dimenA \advance \!xB by -\!dimenB%   ** b=3I-II
  \!xC=2\!dimenB \advance \!xC by -2\!dimenA%  ** c=2(II-I)
%
% ** Find coefficients for y(t)=y_x + b_y*t + c_y*t**2
  \!dimenA=\!yM  \advance \!dimenA by -\!yS%   
  \!dimenB=\!yE  \advance \!dimenB by -\!yM%  
  \!yB=3\!dimenA \advance \!yB by -\!dimenB%  
  \!yC=2\!dimenB \advance \!yC by -2\!dimenA% 
%
% ** Use Simpson's rule to calculate arc length over [0,1/2]:
% **   arc length = 1/2[1/6 f(0) + 4/6 f(1/4) + 1/6 f(1/2)]
% ** with f(t) = sqrt(x'(t)**2 + y'(t)**2).
  \!xprime=\!xB  \!yprime=\!yB%          ** x'(t) = b + 2ct
  \!dxprime=.5\!xC  \!dyprime=.5\!yC%    ** dt=1/4 ==> dx'(t) = c/2
  \!getf \!midarclength=\!dimenA
  \!getf \advance \!midarclength by 4\!dimenA
  \!getf \advance \!midarclength by \!dimenA
  \divide \!midarclength by 12
%
% ** Get arc length over [0,1].
  \!arclength=\!dimenA
  \!getf \advance \!arclength by 4\!dimenA
  \!getf \advance \!arclength by \!dimenA
  \divide \!arclength by 12%             ** Now have arc length over [1/2,1]
  \advance \!arclength by \!midarclength
  \global\advance \totalarclength by \!arclength
%
%
% ** Check to see if there's anything to plot in this interval
  \ifdim\!distacross>\!arclength 
    \advance \!distacross by -\!arclength%   ** nothing 
%
  \else
    \!initinverseinterp%  ** initialize for inverse interpolation on arc length
    \loop\ifdim\!distacross<\!arclength%     ** loop over points on arc 
      \!inverseinterp%    ** find  t  such that arc length[0,t] = distacross,
%                         **   using inverse quadratic interpolation
%                         ** now evaluate x(t)=(c*t + b)*t + a
      \!xpos=\!t\!xC \advance\!xpos by \!xB
        \!xpos=\!t\!xpos \advance \!xpos by \!xS
%                                             ** evaluate y(t)
      \!ypos=\!t\!yC \advance\!ypos by \!yB
        \!ypos=\!t\!ypos \advance \!ypos by \!yS
      \!plotifinbounds%                       ** plot point if in bounds
      \advance\!distacross \plotsymbolspacing%** advance arc length for next pt
      \!advancedashing%                       ** see "linear"
    \repeat  
%
    \advance \!distacross by -\!arclength%    ** prepare for next interval 
  \fi
%
  \!xS=\!xE%              ** shift ending points to starting points
  \!yS=\!yE
  \ignorespaces}
 
 
% ** \!getf -- Calculates sqrt(x'(t)**2 + y'(t)**2) and advances
% **   x'(t) and y'(t)
\def\!getf{\!Pythag\!xprime\!yprime\!dimenA%
  \advance\!xprime by \!dxprime
  \advance\!yprime by \!dyprime}
 
 
% ** \!initinverseinterp -- initializes for inverse quadratic interpolation
% ** of arc length provided  1/3 < midarclength/arclength < 2/3; otherwise
% ** initializes for inverse linear interpolation.
\def\!initinverseinterp{%
  \ifdim\!arclength>\!zpt
    \!divide{8\!midarclength}\!arclength\!dimenE% ** dimE=8w=8r/s, where  r 
%                                               **  = midarclength, s=arclength
% **  Test for  w  out of range:  w<1/3  or w>2/3
    \ifdim\!dimenE<\!wmin \!setinverselinear
    \else 
      \ifdim\!dimenE>\!wmax \!setinverselinear
      \else%                                    ** w  in range: initialize
        \def\!inverseinterp{\!inversequad}\ignorespaces
%
% **     Calculate the coefficients  \!beta  and  \!gamma  of the quadratic
% **                    t = \!beta*v + \!gamma*v**2
% **     taking the values  t=0, 1/2, 1  at  v=0, w==r/s, 1  respectively:
% **        \!beta = (1/2 - w**2)/[w(1-w)] 
% **        \!gamma = 1 - beta.
%
         \!removept\!dimenE\!Ew%           **  8w, without "pt"
         \!dimenF=-\!Ew\!dimenE%           **  -(8w)**2
         \advance\!dimenF by 32pt%         **  32 - (8w)**2
         \!dimenG=8pt 
         \advance\!dimenG by -\!dimenE%    **  8 - 8w
         \!dimenG=\!Ew\!dimenG%            **  (8w)*(8-8w)
         \!divide\!dimenF\!dimenG\!beta%   **  beta = (32-(8w)**2)/(8w(8-8w))
%                                          **       = (1/2 - w**2)/(w(1-w))
         \!gamma=1pt
         \advance \!gamma by -\!beta%      **  gamma = 1-beta
      \fi%       ** end of the \ifdim\!dimenE>\!wmax
    \fi%         ** end of the \ifdim\!dimenE<\!wmin
  \fi%           ** end of the \ifdim\!arclength>\!zpt
  \ignorespaces}
 
 
% ** For 0 <= t <= 1, let AL(t) = arclength[0,t]/arclength[0,1]; note
% ** AL(0)=0, AL(1/2)=midarclength/arclength, AL(1)=1.  This routine
% ** calculates an approximation to AL^{-1}(distance across/arclength),
% ** using the assumption that AL^{-1} is quadratic.  Specifically, 
% ** it finds  t  such that
% **    AL^{-1}(v) =. t = v*(\!beta + \!gamma*v)
% ** where  \!beta  and  \!gamma  are set by \!initinv, and where
% ** v=distance across/arclength
\def\!inversequad{%
  \!divide\!distacross\!arclength\!dimenG%   ** dimG = v = distacross/arclength
  \!removept\!dimenG\!v%                     ** v, without "pt"
  \!dimenG=\!v\!gamma%                       ** gamma*v
  \advance\!dimenG by \!beta%                ** beta + gamma*v
  \!dimenG=\!v\!dimenG%                      ** t = v*(beta + gamma*v)
  \!removept\!dimenG\!t}%                    ** t, without "pt"
 
 
% ** When  w <= 1/3  or  w >= 2/3, the following routine writes (using
% ** plain TEK's \wlog command) a warning message on the user's log file,
% ** and initializes for inverse linear interpolation on arc length.
\def\!setinverselinear{%
  \def\!inverseinterp{\!inverselinear}%
  \divide\!dimenE by 8 \!removept\!dimenE\!t
  \!countC=\!intervalno \multiply \!countC 2
  \!countB=\!countC     \advance \!countB -1
  \!countA=\!countB     \advance \!countA -1
  \wlog{\the\!countB th point (\!xmidpt,\!ymidpt) being plotted 
    doesn't lie in the}%
  \wlog{ middle third of the arc between the \the\!countA th 
    and \the\!countC th points:}%
  \wlog{ [arc length \the\!countA\space to \the\!countB]/[arc length 
    \the \!countA\space to \the\!countC]=\!t.}%
  \ignorespaces}
 
% **  Inverse linear interpolation
\def\!inverselinear{% 
  \!divide\!distacross\!arclength\!dimenG
  \!removept\!dimenG\!t}


% **************************************
% **  ROTATIONS  (Handles rotations) ***
% **************************************
 
% ** User commands
% **   \startrotation [by COS_OF_ANGLE SIN_OF_ANGLE] [about XPIVOT YPIVOT]
% **   \stoprotation

% **   \startrotation [by COS_OF_ANGLE SIN_OF_ANGLE] [about XPIVOT YPIVOT]
% ** Future (XCOORD,YCOORD)'s will be rotated about (XPIVOT,YPIVOT) 
% ** by the angle with the give COS and SIN. Both fields are optional.
% ** [COS,SIN] defaults to previous value, or (1,0).
% ** (XPIVOT,YPIVOT) defaults to previous value, or (0,0)
% ** You can't change the coordinate system in the scope of a rotation.
% ** See Subsection 9.1 of the manual.
\def\startrotation{%
  \let\!rotateaboutpivot=\!!rotateaboutpivot
  \let\!rotateonly=\!!rotateonly
  \!ifnextchar{b}{\!getsincos }%
    {\!getsincos by {\!cosrotationangle} {\!sinrotationangle} }}
\def\!getsincos by #1 #2 {%
  \edef\!cosrotationangle{#1}%
  \edef\!sinrotationangle{#2}%
  \!ifcoordmode 
    \let\!ROnext=\!ccheckforpivot
  \else
    \let\!ROnext=\!dcheckforpivot
  \fi
  \!ROnext}
\def\!ccheckforpivot{%
  \!ifnextchar{a}{\!cgetpivot}%
    {\!cgetpivot about {\!xpivotcoord} {\!ypivotcoord} }}
\def\!cgetpivot about #1 #2 {%
  \edef\!xpivotcoord{#1}%
  \edef\!ypivotcoord{#2}%
  \!xpivot=#1\!xunit  \!ypivot=#2\!yunit
  \ignorespaces}
\def\!dcheckforpivot{%
  \!ifnextchar{a}{\!dgetpivot}{\ignorespaces}}
\def\!dgetpivot about #1 #2 {%
  \!xpivot=#1\relax  \!ypivot=#2\relax
  \ignorespaces}
  

% ** Following terminates rotation.
% ** See Subsection 9.1 of the manual.
\def\stoprotation{%
  \let\!rotateaboutpivot=\!!!rotateaboutpivot
  \let\!rotateonly=\!!!rotateonly
  \ignorespaces}
 
% ** !!rotateaboutpivot{XREG}{YREG}
% ** XREG <-- xpvt + cos(angle)*(XREG-xpvt) - sin(angle)*(YREG-ypvt)
% ** YREG <-- ypvt + cos(angle)*(YREG-ypvt) + sin(angle)*(XREG-xpvt)
% ** XREG,YREG are dimension registers. Can't be \!dimenA to \!dimenD
\def\!!rotateaboutpivot#1#2{%
  \!dimenA=#1\relax  \advance\!dimenA -\!xpivot
  \!dimenB=#2\relax  \advance\!dimenB -\!ypivot
  \!dimenC=\!cosrotationangle\!dimenA
    \advance \!dimenC -\!sinrotationangle\!dimenB
  \!dimenD=\!cosrotationangle\!dimenB
    \advance \!dimenD  \!sinrotationangle\!dimenA
  \advance\!dimenC \!xpivot  \advance\!dimenD \!ypivot
  #1=\!dimenC  #2=\!dimenD
  \ignorespaces}

% ** \!!rotateonly{XREG}{YREG}
% ** Like \!!rotateaboutpivot, but with a pivot of  (0,0)
\def\!!rotateonly#1#2{%
  \!dimenA=#1\relax  \!dimenB=#2\relax 
  \!dimenC=\!cosrotationangle\!dimenA
    \advance \!dimenC -\!rotsign\!sinrotationangle\!dimenB
  \!dimenD=\!cosrotationangle\!dimenB
    \advance \!dimenD  \!rotsign\!sinrotationangle\!dimenA
  #1=\!dimenC  #2=\!dimenD
  \ignorespaces}
\def\!rotsign{}
\def\!!!rotateaboutpivot#1#2{\relax}
\def\!!!rotateonly#1#2{\relax}
\stoprotation

\def\!reverserotateonly#1#2{%
  \def\!rotsign{-}%
  \!rotateonly{#1}{#2}%
  \def\!rotsign{}%
  \ignorespaces}


% **********************************
% *** SHADING  (Handles shading) ***
% **********************************

% **  User commands
% **    \setshadegrid [span <SPAN>] [point at XSHADE YSHADE] 
% **    \setshadesymbol [<LS, RS, BS, TS>] ({SHADESYMBOL}
% **      <XDIMEN,YDIMEN> [ORIENTATION])

% **  Internal commands:
% **    \!startvshade  (xS,ybS,ytS)
% **    \!starthshade  (yS,xlS,xrS)
% **    \!lshade [<LS,RS,BS,TS>]
% **       ** when shading vertically:
% **       [the region from (xS,ybS,ytS) to] (xE,ybE,ytE)
% **       ** when shading horizontally:
% **       [the region from (yS,xlS,xrS) to] (yE,xlE,xrE)
% **    \!qshade [<LS,RS,BS,TS>]
% **       ** when shading vertically:
% **       [the region from (xS,ybS,ytS) to] (xM,ybM,ytM)  (xE,ybE,ytE)
% **       ** when shading horizontally:
% **       [the region from (yS,xlS,xrS) to] (yM,xlM,xrM)  (yE,xlE,xrE)
% **    \!lattice{ANCHOR}{SPAN}{LOCATION}{INDEX}{LATTICE LOCATION}
% **    \!override{NOMINAL DIMEN}{REPLACEMENT DIMEN}{DIMEN}


% **  The shading routine can operate either in a "vertical mode" or a
% **  "horizontal mode".  In vertical mode, the region to be shaded is specified
% **  in the form
% **                 {(x,y): xl <= x <= xr  &  yb(x) <= y <= yt(x)}
% **  where  yb  and  yt  are functions of  x.  In horizontal mode, the region
% **  is specified in the form
% **                 {(x,y): yb <= y <= yt  &  xl(y) <= x <= xr(y)}.
% **  The functions  yb  and  yt  may be either both linear or both quadratic;
% **  similarly for  xl  and  xr.  A region with say, piecewise quadratic bottom
% **  and top boundaries, can be shaded by consecutive (vertical) \!qshades,
% **  proceeding from left to right.  Similarly, a region with piecewise     
% **  quadratic left and right boundaries can be shaded by consecutive
% **  (horizontal) \!qshades, proceeding from bottom to top.  More complex
% **  regions can be shaded by partitioning them into appropriate subregions,
% **  and shading those.
    
% **  Shading is accomplished by placing a user-selected shading symbol at
% **  those points of a regular grid which fall within the region to be
% **  shaded.  This region can be "shrunk" so that a largish shading symbol
% **  will not extend outside it.  Shrinking is accomplished by specifying
% **  shrinkages for the left, right, bottom, and top boundaries, in a manner
% **  discussed further below.

% **  \shades and \!joins MUST NOT be intermingled.  Finish drawing a curve
% **  before starting to shade a region, and finish shading a region before
% **  starting to draw a curve.


% **  \setshadegrid [span <SPAN>] [point at XSHADE YSHADE] 
% **  The shading symbol is placed down on the points of a grid centered
% **  at the coordinate point (XSHADE,YSHADE).  The grid points are of the
% **  form (j*SPAN,k*SPAN), with  j+k  even.  SPAN is specified
% **  as a dimension.
% **  (XSHADE,YSHADE) defaults to previous (XSHADE,YSHADE) (or (0,0) if none)
% **  SPAN defaults to previous span (or 5pt if none)
% **  See Subsection 7.2 of the manual.
\def\setshadegrid{%
  \!ifnextchar{s}{\!getspan }
    {\!getspan span <\!dshade>}}
\def\!getspan span <#1>{%
  \!dshade=#1\relax
  \!ifcoordmode 
    \let\!GRnext=\!GRccheckforAP
  \else
    \let\!GRnext=\!GRdcheckforAP
  \fi
  \!GRnext}
\def\!GRccheckforAP{%
  \!ifnextchar{p}{\!cgetanchor }
    {\!cgetanchor point at {\!xshadesave} {\!yshadesave} }}
\def\!cgetanchor point at #1 #2 {%
  \edef\!xshadesave{#1}\edef\!yshadesave{#2}%
  \!xshade=\!xshadesave\!xunit  \!yshade=\!yshadesave\!yunit
  \ignorespaces}
\def\!GRdcheckforAP{%
  \!ifnextchar{p}{\!dgetanchor}%
    {\ignorespaces}}
\def\!dgetanchor point at #1 #2 {%
  \!xshade=#1\relax  \!yshade=#2\relax
  \ignorespaces}

% **  \setshadesymbol  [<LS, RS, BS, TS>] ({SHADESYMBOL}
% **    <XDIMEN,YDIMEN> [ORIENTATION])
% **  Saves SHADESYMBOL away in an hbox for use with shading routines.
% **  A shade symbol will not be plotted if its plot position comes within
% **    distance LS of the left boundary,  RS of the right boundary,  TS of the
% **    top boundary,  BS of the bottom boundary.  These parameters have 
% **    default values that should work in most cases (see below).
% **    To override a default value, specify the replacement value
% **    in the appropriate subfield of the shrinkages field.
% **    0pt may be coded as  "z" (without the quotes).  To accept a
% **    default value, leave the field empty.  Thus
% **      [,z,,5pt]  sets  LS=default, RS=0pt, BS=default, TS=5pt .
% **    Skipping the shrinkages field accepts all the defaults.
% **  See Subsection 7.1 of the manual.
\def\setshadesymbol{%
  \!ifnextchar<{\!setshadesymbol}{\!setshadesymbol<,,,> }}

\def\!setshadesymbol <#1,#2,#3,#4> (#5#6){%
% **  set the shadesymbol
  \!setputobject{#5}{#6}%                        
  \setbox\!shadesymbol=\box\!putobject%
  \!shadesymbolxshift=\!xshift \!shadesymbolyshift=\!yshift
%
% **  set the shrinkages
  \!dimenA=\!xshift \advance\!dimenA \!smidge% ** default LS = xshift - smidge
  \!override\!dimenA{#1}\!lshrinkage%         
  \!dimenA=\!wd \advance \!dimenA -\!xshift%   ** default RS = width - xshift
    \advance\!dimenA \!smidge%                                  - smidge
    \!override\!dimenA{#2}\!rshrinkage
  \!dimenA=\!dp \advance \!dimenA \!yshift%    ** default BS = depth + yshift
    \advance\!dimenA \!smidge%                                  - smidge
    \!override\!dimenA{#3}\!bshrinkage
  \!dimenA=\!ht \advance \!dimenA -\!yshift%   ** default TS = height - yshift
    \advance\!dimenA \!smidge%                                  - smidge
    \!override\!dimenA{#4}\!tshrinkage
  \ignorespaces}
\def\!smidge{-.2pt}%

% ** \!override{NOMINAL DIMEN}{REPLACEMENT DIMEN}{DIMEN}
% ** Overrides the NOMINAL DIMEN by the REPLACEMENT DIMEN to produce DIMEN,
% ** according to the following rules:
% **   REPLACEMENT DIMEN empty: DIMEN <-- NOMINAL DIMEN
% **   REPLACEMENT DIMEN z:     DIMEN <-- 0pt
% **   otherwise:               DIMEN <-- REPLACEMENT DIMEN
% ** DIMEN must be a dimension register
\def\!override#1#2#3{%
  \edef\!!override{#2}% 
  \ifx \!!override\empty
    #3=#1\relax
  \else
    \if z\!!override
      #3=\!zpt
    \else
      \ifx \!!override\!blankz
        #3=\!zpt
      \else
        #3=#2\relax
      \fi
    \fi
  \fi
  \ignorespaces}
\def\!blankz{ z}

\setshadesymbol ({\fiverm .})%       ** initialize plotsymbol
%                                    ** \fivesy ^^B  is a small cross


% ** \!startvshade [at] (xS,ybS,ytS)
% ** Initiates vertical shading mode
\def\!startvshade#1(#2,#3,#4){%
  \let\!!xunit=\!xunit%
  \let\!!yunit=\!yunit%
  \let\!!xshade=\!xshade%
  \let\!!yshade=\!yshade%
  \def\!getshrinkages{\!vgetshrinkages}%
  \let\!setshadelocation=\!vsetshadelocation%
  \!xS=\!M{#2}\!!xunit
  \!ybS=\!M{#3}\!!yunit
  \!ytS=\!M{#4}\!!yunit
  \!shadexorigin=\!xorigin  \advance \!shadexorigin \!shadesymbolxshift
  \!shadeyorigin=\!yorigin  \advance \!shadeyorigin \!shadesymbolyshift
  \ignorespaces}
 
% ** \!starthshade [at] (yS,xlS,xrS)
% ** Initiates horizontal shading mode
\def\!starthshade#1(#2,#3,#4){%
  \let\!!xunit=\!yunit%
  \let\!!yunit=\!xunit%
  \let\!!xshade=\!yshade%
  \let\!!yshade=\!xshade%
  \def\!getshrinkages{\!hgetshrinkages}%
  \let\!setshadelocation=\!hsetshadelocation%
  \!xS=\!M{#2}\!!xunit
  \!ybS=\!M{#3}\!!yunit
  \!ytS=\!M{#4}\!!yunit
  \!shadexorigin=\!xorigin  \advance \!shadexorigin \!shadesymbolxshift
  \!shadeyorigin=\!yorigin  \advance \!shadeyorigin \!shadesymbolyshift
  \ignorespaces}


% **  \!lattice{ANCHOR}{SPAN}{LOCATION}{INDEX}{LATTICE LOCATION}
% **  Consider the lattice with points  ANCHOR + j*SPAN. This routine determines
% **  the index  k  of the smallest lattice point >= LOCATION, and sets
% **  LATTICE LOCATION = ANCHOR + k*SPAN.
% **  INDEX is assumed to be a count register, LATTICE LOCATION a dimen reg.
\def\!lattice#1#2#3#4#5{%
  \!dimenA=#1%                        ** dimA = ANCHOR
  \!dimenB=#2%                        ** dimB = SPAN  (assumed > 0pt)
  \!countB=\!dimenB%                  ** ctB  = SPAN, as a count
%
% ** Determine index of smallest lattice point >= LOCATION
  \!dimenC=#3%                        ** dimC = LOCATION
  \advance\!dimenC -\!dimenA%         ** now dimC = LOCATION-ANCHOR
  \!countA=\!dimenC%                  ** ctA = above, as a count
  \divide\!countA \!countB%           ** now ctA = desired index, if dimC <= 0
  \ifdim\!dimenC>\!zpt
    \!dimenD=\!countA\!dimenB%        ** (tentative k)*span
    \ifdim\!dimenD<\!dimenC%          ** if this is false, ctA = desired index
      \advance\!countA 1 %            ** if true, have to add 1
    \fi
  \fi
%
  \!dimenC=\!countA\!dimenB%          ** lattice location = anchor + ctA*span
    \advance\!dimenC \!dimenA
  #4=\!countA%                        ** the desired index
  #5=\!dimenC%                        ** corresponding lattice location
  \ignorespaces}


% ** \!qshade [with shrinkages] [[LS,RS,BS,TS]]
% ***** during vertical shading:
% **    [the region from (xS,ybS,ytS) to] (xM,ybM,ytM) [and] (xE,ybE,ytE)
% ** Shades the region {(x,y): xS <= x <= xE, yb(x) <= y <= yt(x)}, where 
% **   yb is the quadratic thru (xS,ybS) & (xM,ybM) & (xE,ybE)
% **   yt is the quadratic thru (xS,ytS) & (xM,ybM) & (xE,ytE)
% ** xS,ybS,ytS are either given by \!startvshade or carried over
% **   as the ending values of the immediately preceding \!qshade.
% ** For the interpretation of LS, RS, BS, & TS, see \setshadesymbol. The
% **   values set there can be overridden, for the course of this \!qshade
% **   only, in the same manner as overrides are specified for
% **   \setshadesymbol.
% ***** during horizontal shading:
% **    [the region from (yS,xlS,xrS) to] (yM,xlM,xrM) [and] (yE,xlE,xrE)
\def\!qshade#1(#2,#3,#4)#5(#6,#7,#8){%
  \!xM=\!M{#2}\!!xunit
  \!ybM=\!M{#3}\!!yunit
  \!ytM=\!M{#4}\!!yunit
  \!xE=\!M{#6}\!!xunit
  \!ybE=\!M{#7}\!!yunit
  \!ytE=\!M{#8}\!!yunit
  \!getcoeffs\!xS\!ybS\!xM\!ybM\!xE\!ybE\!ybB\!ybC%**Get coefficients B & C for
  \!getcoeffs\!xS\!ytS\!xM\!ytM\!xE\!ytE\!ytB\!ytC%**y=y0 + B(x-X0) + C(x-X0)**2
  \def\!getylimits{\!qgetylimits}%
  \!shade{#1}\ignorespaces}
 
% ** \!lshade ... (xE,ybE,ytE)
% ** This is like \!qshade, but the top and bottom boundaries are linear,
% ** rather than quadratic.
\def\!lshade#1(#2,#3,#4){%
  \!xE=\!M{#2}\!!xunit
  \!ybE=\!M{#3}\!!yunit
  \!ytE=\!M{#4}\!!yunit
  \!dimenE=\!xE  \advance \!dimenE -\!xS%   ** xE-xS
  \!dimenC=\!ytE \advance \!dimenC -\!ytS%  ** ytE-ytS
  \!divide\!dimenC\!dimenE\!ytB%            ** ytB = (ytE-ytS)/(xE-xS)
  \!dimenC=\!ybE \advance \!dimenC -\!ybS%  ** ybE-ybS
  \!divide\!dimenC\!dimenE\!ybB%            ** ybB = (ybE-ybS)/(xE-xS)
  \def\!getylimits{\!lgetylimits}%
  \!shade{#1}\ignorespaces}
 
% **  \!getcoeffs{X0}{Y0}{X1}{Y1}{X2}{Y2}{B}{C}
% **  Finds  B  and  C  such that the quadratic  y = Y0 + B(x-X0) + C(x-X0)**2
% **  passes through (X1,Y1) and (X2,Y2):  when X0=0=Y0, the formulas are:
% **                   B = S1 - X1*C,   C = (S2-S1)/X2
% **  with
% **                 S1 = Y1/X1,   S2 = (Y2-Y1)/(X2-X1).
\def\!getcoeffs#1#2#3#4#5#6#7#8{% 
  \!dimenC=#4\advance \!dimenC -#2%            ** dimC=Y1-Y0
  \!dimenE=#3\advance \!dimenE -#1%            ** dimE=X1-X0
  \!divide\!dimenC\!dimenE\!dimenF%            ** dimF=S1
  \!dimenC=#6\advance \!dimenC -#4%            ** dimC=Y2-Y1
  \!dimenH=#5\advance \!dimenH -#3%            ** dimH=X2-X1
  \!divide\!dimenC\!dimenH\!dimenG%            ** dimG=S2
  \advance\!dimenG -\!dimenF%                  ** dimG=S2-S1
  \advance \!dimenH \!dimenE%                  ** dimH=X2-X0
  \!divide\!dimenG\!dimenH#8%                  ** C=(S2-S1)/(X2-X0)
  \!removept#8\!t%                             ** C, without "pt"
  #7=-\!t\!dimenE%                             ** -C*(X1-X0)
  \advance #7\!dimenF%                         ** B=S1-C*(X1-X0)
  \ignorespaces}
 
 
\def\!shade#1{%
% ** Get LS,RS,BS,TS for this panel
  \!getshrinkages#1<,,,>\!nil% %       ** now effective LS=dimE, RS=dimF,
%                                      **   BS=dimG, TS=dimH
  \advance \!dimenE \!xS%              ** now dimE=xS+LS
  \!lattice\!!xshade\!dshade\!dimenE%  ** set parity=index of left-mst x-lattice
    \!parity\!xpos%                    **   point >= xS+LS, xpos=its location
  \!dimenF=-\!dimenF%                  ** set dimF=xE-RS
    \advance\!dimenF \!xE
%               
  \!loop\!not{\ifdim\!xpos>\!dimenF}%  ** loop over x-lattice points <= xE-RS
    \!shadecolumn%                 
    \advance\!xpos \!dshade%           ** move over to next column
    \advance\!parity 1%                ** increase index of x-point
  \repeat
%
  \!xS=\!xE%                           ** shift ending values to starting values
  \!ybS=\!ybE
  \!ytS=\!ytE
  \ignorespaces}
 
 
\def\!vgetshrinkages#1<#2,#3,#4,#5>#6\!nil{%
  \!override\!lshrinkage{#2}\!dimenE
  \!override\!rshrinkage{#3}\!dimenF
  \!override\!bshrinkage{#4}\!dimenG
  \!override\!tshrinkage{#5}\!dimenH
  \ignorespaces}
\def\!hgetshrinkages#1<#2,#3,#4,#5>#6\!nil{%
  \!override\!lshrinkage{#2}\!dimenG
  \!override\!rshrinkage{#3}\!dimenH
  \!override\!bshrinkage{#4}\!dimenE
  \!override\!tshrinkage{#5}\!dimenF
  \ignorespaces}
 
 
\def\!shadecolumn{%
  \!dxpos=\!xpos
  \advance\!dxpos -\!xS%            ** dx = x - xS
  \!removept\!dxpos\!dx%            ** ditto, without "pt"
  \!getylimits%                     ** get top and bottom y-values
  \advance\!ytpos -\!dimenH%        ** less TS
  \advance\!ybpos \!dimenG%         ** plus BS
  \!yloc=\!!yshade%                 ** get anchor point for this column
  \ifodd\!parity 
     \advance\!yloc \!dshade
  \fi
  \!lattice\!yloc{2\!dshade}\!ybpos%
    \!countA\!ypos%                 ** ypos=smallest y point for this column
  \!dimenA=-\!shadexorigin \advance \!dimenA \!xpos%      ** over
  \loop\!not{\ifdim\!ypos>\!ytpos}% ** loop over ypos <= yt(t)
    \!setshadelocation%             ** vmode: xloc=xpos, yloc=ypos 
%                                   ** hmode: xloc=ypos, yloc=xpos 
    \!rotateaboutpivot\!xloc\!yloc%
    \!dimenA=-\!shadexorigin \advance \!dimenA \!xloc%    ** over
    \!dimenB=-\!shadeyorigin \advance \!dimenB \!yloc%    ** up
    \kern\!dimenA \raise\!dimenB\copy\!shadesymbol \kern-\!dimenA
    \advance\!ypos 2\!dshade
  \repeat
  \ignorespaces}
 
\def\!qgetylimits{%
  \!dimenA=\!dx\!ytC              
  \advance\!dimenA \!ytB%         ** yt(t)=ytS + dx*(Bt + dx*Ct)
  \!ytpos=\!dx\!dimenA
  \advance\!ytpos \!ytS
  \!dimenA=\!dx\!ybC              
  \advance\!dimenA \!ybB%         ** yb(t)=ybS + dx*(Bb + dx*Cb)
  \!ybpos=\!dx\!dimenA
  \advance\!ybpos \!ybS}
 
\def\!lgetylimits{%
  \!ytpos=\!dx\!ytB%              ** yt(t)=ytS + dx*Bt
  \advance\!ytpos \!ytS
  \!ybpos=\!dx\!ybB%              ** yb(t)=ybS + dx*Bb
  \advance\!ybpos \!ybS}
 
\def\!vsetshadelocation{%         ** vmode: xloc=xpos, yloc=ypos 
  \!xloc=\!xpos
  \!yloc=\!ypos}
\def\!hsetshadelocation{%         ** hmode: xloc=ypos, yloc=xpos 
  \!xloc=\!ypos
  \!yloc=\!xpos}


% **************************************
% *** TICKS  (Draws ticks on graphs) ***
% **************************************

% ** User commands
% **   \ticksout
% **   \ticksin
% **   \gridlines
% **   \nogridlines
% **   \loggedticks
% **   \unloggesticks
% ** See Subsection 3.4 of the manual

% ** The following is an option of the \axis command
% **   ticks 
% **     [in] [out] 
% **     [long] [short] [length <LENGTH>] 
% **     [width <WIDTH>]
% **     [andacross] [butnotacross] 
% **     [logged] [unlogged] 
% **     [unlabeled] [numbered] [withvalues VALUE1 VALUE2 ... VALUEk / ]
% **     [quantity Q] [at LOC1 LOC2 ... LOCk / ] [from LOC1 to LOC2 by
% **       LOC_INCREMENT]
% ** See Subsection 3.2 of the manual for the rules.

% ** The various options of the  tick  field are processed by the
% ** \!nextkeyword  command defined below.
% ** For example, `\!nextkeyword short '  expands to  `\!ticksshort',
% ** while `\!nextkeyword withvalues' expands to `\!tickswithvalues'.

\def\!axisticks {%
  \def\!nextkeyword##1 {%
    \expandafter\ifx\csname !ticks##1\endcsname \relax
      \def\!next{\!fixkeyword{##1}}%
    \else
      \def\!next{\csname !ticks##1\endcsname}%
    \fi
    \!next}%
  \!axissetup
    \def\!axissetup{\relax}%
  \edef\!ticksinoutsign{\!ticksinoutSign}%
  \!ticklength=\longticklength
  \!tickwidth=\linethickness
  \!gridlinestatus
  \!setticktransform
  \!maketick
  \!tickcase=0
  \def\!LTlist{}%
  \!nextkeyword}

\def\ticksout{%
  \def\!ticksinoutSign{+}}
\def\ticksin{%
  \def\!ticksinoutSign{-}}
\ticksout

\def\gridlines{%
  \def\!gridlinestatus{\!gridlinestootrue}}
\def\nogridlines{%
  \def\!gridlinestatus{\!gridlinestoofalse}}
\nogridlines

\def\loggedticks{%
  \def\!setticktransform{\let\!ticktransform=\!logten}}
\def\unloggedticks{%
  \def\!setticktransform{\let\!ticktransform=\!donothing}}
\def\!donothing#1#2{\def#2{#1}}
\unloggedticks

% ** \!ticks/ : terminates read of tick options
\expandafter\def\csname !ticks/\endcsname{%
  \!not {\ifx \!LTlist\empty}
    \!placetickvalues
  \fi
  \def\!tickvalueslist{}%
  \def\!LTlist{}%
  \expandafter\csname !axis/\endcsname}

\def\!maketick{%
  \setbox\!boxA=\hbox{%
    \beginpicture
      \!setdimenmode
      \setcoordinatesystem point at {\!zpt} {\!zpt}   
      \linethickness=\!tickwidth
      \ifdim\!ticklength>\!zpt
        \putrule from {\!zpt} {\!zpt} to
          {\!ticksinoutsign\!tickxsign\!ticklength}
          {\!ticksinoutsign\!tickysign\!ticklength}
      \fi
      \if!gridlinestoo
        \putrule from {\!zpt} {\!zpt} to
          {-\!tickxsign\!xaxislength} {-\!tickysign\!yaxislength}
      \fi
    \endpicturesave <\!Xsave,\!Ysave>}%
    \wd\!boxA=\!zpt}
  
\def\!ticksin{%
  \def\!ticksinoutsign{-}%
  \!maketick
  \!nextkeyword}

\def\!ticksout{%
  \def\!ticksinoutsign{+}%
  \!maketick
  \!nextkeyword}

\def\!tickslength<#1> {%
  \!ticklength=#1\relax
  \!maketick
  \!nextkeyword}

\def\!tickslong{%
  \!tickslength<\longticklength> }

\def\!ticksshort{%
  \!tickslength<\shortticklength> }

\def\!tickswidth<#1> {%
  \!tickwidth=#1\relax
  \!maketick
  \!nextkeyword}

\def\!ticksandacross{%
  \!gridlinestootrue
  \!maketick
  \!nextkeyword}

\def\!ticksbutnotacross{%
  \!gridlinestoofalse
  \!maketick
  \!nextkeyword}

\def\!tickslogged{%
  \let\!ticktransform=\!logten
  \!nextkeyword}

\def\!ticksunlogged{%
  \let\!ticktransform=\!donothing
  \!nextkeyword}

\def\!ticksunlabeled{%
  \!tickcase=0
  \!nextkeyword}

\def\!ticksnumbered{%
  \!tickcase=1
  \!nextkeyword}

\def\!tickswithvalues#1/ {%
  \edef\!tickvalueslist{#1! /}%
  \!tickcase=2
  \!nextkeyword}

\def\!ticksquantity#1 {%
  \ifnum #1>1
    \!updatetickoffset
    \!countA=#1\relax
    \advance \!countA -1
    \!ticklocationincr=\!axisLength
      \divide \!ticklocationincr \!countA
    \!ticklocation=\!axisstart
    \loop \!not{\ifdim \!ticklocation>\!axisend}
      \!placetick\!ticklocation
      \ifcase\!tickcase
          \relax %  Case 0: no labels
        \or
          \relax %  Case 1: numbered -- not available here
        \or
          \expandafter\!gettickvaluefrom\!tickvalueslist
          \edef\!tickfield{{\the\!ticklocation}{\!value}}%
          \expandafter\!listaddon\expandafter{\!tickfield}\!LTlist%
      \fi
      \advance \!ticklocation \!ticklocationincr
    \repeat
  \fi
  \!nextkeyword}

\def\!ticksat#1 {%
  \!updatetickoffset
  \edef\!Loc{#1}%
  \if /\!Loc
    \def\next{\!nextkeyword}%
  \else
    \!ticksincommon
    \def\next{\!ticksat}%
  \fi
  \next}    
      
\def\!ticksfrom#1 to #2 by #3 {%
  \!updatetickoffset
  \edef\!arg{#3}%
  \expandafter\!separate\!arg\!nil
  \!scalefactor=1
  \expandafter\!countfigures\!arg/
  \edef\!arg{#1}%
  \!scaleup\!arg by\!scalefactor to\!countE
  \edef\!arg{#2}%
  \!scaleup\!arg by\!scalefactor to\!countF
  \edef\!arg{#3}%
  \!scaleup\!arg by\!scalefactor to\!countG
  \loop \!not{\ifnum\!countE>\!countF}
    \ifnum\!scalefactor=1
      \edef\!Loc{\the\!countE}%
    \else
      \!scaledown\!countE by\!scalefactor to\!Loc
    \fi
    \!ticksincommon
    \advance \!countE \!countG
  \repeat
  \!nextkeyword}

\def\!updatetickoffset{%
  \!dimenA=\!ticksinoutsign\!ticklength
  \ifdim \!dimenA>\!offset
    \!offset=\!dimenA
  \fi}

\def\!placetick#1{%
  \if!xswitch
    \!xpos=#1\relax
    \!ypos=\!axisylevel
  \else
    \!xpos=\!axisxlevel
    \!ypos=#1\relax
  \fi
  \advance\!xpos \!Xsave
  \advance\!ypos \!Ysave
  \kern\!xpos\raise\!ypos\copy\!boxA\kern-\!xpos
  \ignorespaces}

\def\!gettickvaluefrom#1 #2 /{%
  \edef\!value{#1}%
  \edef\!tickvalueslist{#2 /}%
  \ifx \!tickvalueslist\!endtickvaluelist
    \!tickcase=0
  \fi}
\def\!endtickvaluelist{! /}

\def\!ticksincommon{%
  \!ticktransform\!Loc\!t
  \!ticklocation=\!t\!!unit
  \advance\!ticklocation -\!!origin
  \!placetick\!ticklocation
  \ifcase\!tickcase
    \relax % Case 0: no labels
  \or %      Case 1: numbered
    \ifdim\!ticklocation<-\!!origin
      \edef\!Loc{$\!Loc$}%
    \fi
    \edef\!tickfield{{\the\!ticklocation}{\!Loc}}%
    \expandafter\!listaddon\expandafter{\!tickfield}\!LTlist%
  \or %      Case 2: labeled
    \expandafter\!gettickvaluefrom\!tickvalueslist
    \edef\!tickfield{{\the\!ticklocation}{\!value}}%
    \expandafter\!listaddon\expandafter{\!tickfield}\!LTlist%
  \fi}

\def\!separate#1\!nil{%
  \!ifnextchar{-}{\!!separate}{\!!!separate}#1\!nil}
\def\!!separate-#1\!nil{%
  \def\!sign{-}%
  \!!!!separate#1..\!nil}
\def\!!!separate#1\!nil{%
  \def\!sign{+}%
  \!!!!separate#1..\!nil}
\def\!!!!separate#1.#2.#3\!nil{%
  \def\!arg{#1}%
  \ifx\!arg\!empty
    \!countA=0
  \else
    \!countA=\!arg
  \fi
  \def\!arg{#2}%
  \ifx\!arg\!empty
    \!countB=0
  \else
    \!countB=\!arg
  \fi}
 
\def\!countfigures#1{%
  \if #1/%
    \def\!next{\ignorespaces}%
  \else
    \multiply\!scalefactor 10
    \def\!next{\!countfigures}%
  \fi
  \!next}

\def\!scaleup#1by#2to#3{%
  \expandafter\!separate#1\!nil
  \multiply\!countA #2\relax
  \advance\!countA \!countB
  \if -\!sign
    \!countA=-\!countA
  \fi
  #3=\!countA
  \ignorespaces}

\def\!scaledown#1by#2to#3{%
  \!countA=#1\relax%                          ** get original #
  \ifnum \!countA<0 %                         ** take abs value,
    \def\!sign{-}%                            **   remember sign
    \!countA=-\!countA
  \else
    \def\!sign{}%
  \fi
  \!countB=\!countA%                          ** copy |#|
  \divide\!countB #2\relax%                   ** integer part (|#|/sf)
  \!countC=\!countB%                          ** get sf * (|#|/sf)
    \multiply\!countC #2\relax
  \advance \!countA -\!countC%                ** ctA is now remainder
  \edef#3{\!sign\the\!countB.}%               ** +- integerpart.
  \!countC=\!countA %                         ** Tack on proper number
  \ifnum\!countC=0 %                          **   of zeros after .
    \!countC=1
  \fi
  \multiply\!countC 10
  \!loop \ifnum #2>\!countC
    \edef#3{#3\!zero}%
    \multiply\!countC 10
  \repeat
  \edef#3{#3\the\!countA}%                    ** Add on rest of remainder
  \ignorespaces}

\def\!placetickvalues{%
  \advance\!offset \tickstovaluesleading
  \if!xswitch
    \setbox\!boxA=\hbox{%
      \def\\##1##2{%
        \!dimenput {##2} [B] (##1,\!axisylevel)}%
      \beginpicture 
        \!LTlist
      \endpicturesave <\!Xsave,\!Ysave>}%
    \!dimenA=\!axisylevel
      \advance\!dimenA -\!Ysave
      \advance\!dimenA \!tickysign\!offset
      \if -\!tickysign
        \advance\!dimenA -\ht\!boxA
      \else
        \advance\!dimenA  \dp\!boxA
      \fi
    \advance\!offset \ht\!boxA 
      \advance\!offset \dp\!boxA
    \!dimenput {\box\!boxA} [Bl] <\!Xsave,\!Ysave> (\!zpt,\!dimenA)
  \else
    \setbox\!boxA=\hbox{%
      \def\\##1##2{%
        \!dimenput {##2} [r] (\!axisxlevel,##1)}%
      \beginpicture 
        \!LTlist
      \endpicturesave <\!Xsave,\!Ysave>}%
    \!dimenA=\!axisxlevel
      \advance\!dimenA -\!Xsave
      \advance\!dimenA \!tickxsign\!offset
      \if -\!tickxsign
        \advance\!dimenA -\wd\!boxA
      \fi
    \advance\!offset \wd\!boxA
    \!dimenput {\box\!boxA} [Bl] <\!Xsave,\!Ysave> (\!dimenA,\!zpt)
  \fi}


\normalgraphs
\catcode`!=12 %  *****  THIS MUST NEVER BE OMITTED
SHAR_EOF
if test -f 'Pictex/postpictex.tex'
then
	echo shar: over-writing existing file "'Pictex/postpictex.tex'"
fi
cat << \SHAR_EOF > 'Pictex/postpictex.tex'
% This is postpictex.tex  Version 1.1  9/10/87

% To use the PiCTeX macros under LaTeX, you first need to \input the
% file prepictex.tex, then the main corpus of PiCTeX macros (pictex.tex), 
% and finally this file.  Do not \input the file latexpicobjs.tex.
 
\catcode`@=11 \catcode`!=11
  
% Save meanings of PiCTeX keywords that duplicate LaTeX keywords
\let\!pictexendpicture=\endpicture 
\let\!pictexframe=\frame
\let\!pictexlinethickness=\linethickness
\let\!pictexmultiput=\multiput
\let\!pictexput=\put

% Redefine the PiCTeX \beginpicture macro
\def\beginpicture{%
  \setbox\!picbox=\hbox\bgroup%
  \let\endpicture=\!pictexendpicture
  \let\frame=\!pictexframe
  \let\linethickness=\!pictexlinethickness
  \let\multiput=\!pictexmultiput
  \let\put=\!pictexput
  \let\input=\@@input   % \@@input is LaTeX's saved version of TeX's primitive
  \!xleft=\maxdimen  
  \!xright=-\maxdimen
  \!ybot=\maxdimen
  \!ytop=-\maxdimen}

% Reestablish LaTeX's meaning of \frame. This makes
% PiCTeX's meaning of \frame available only inside a PiCture.
\let\frame=\!latexframe

% Make PiCTeX's meaning of \frame available everywhere in the
% guise of \pictexframe
\let\pictexframe=\!pictexframe

% Now do the same for \linethickness
\let\linethickness=\!latexlinethickness
\let\pictexlinethickness=\!pictexlinethickness

% Reset LaTeX's default meaning of \\
\let\\=\@normalcr
\catcode`@=12 \catcode`!=12
SHAR_EOF
if test -f 'Pictex/prepictex.tex'
then
	echo shar: over-writing existing file "'Pictex/prepictex.tex'"
fi
cat << \SHAR_EOF > 'Pictex/prepictex.tex'
% This is prepictex.tex  Version 1.1  9/10/87

% To use the PiCTeX macros under LaTeX, you first need to \input this
% file, then the main corpus of PiCTeX macros (pictex.tex), and then
% the file postpictex.tex. Do not \input the file latexpicobjs.tex.

\catcode`@=11 \catcode`!=11

% First of all, see if  \fiverm  is defined. If so do nothing;
% if not, let  \fiverm  take on meaning of LaTeX's  \fivrm.
\expandafter\ifx\csname fiverm\endcsname\relax
  \let\fiverm\fivrm
\fi
  
% Save meanings of LaTeX keywords that duplicate PiCTeX keywords
\let\!latexendpicture=\endpicture 
\let\!latexframe=\frame
\let\!latexlinethickness=\linethickness
\let\!latexmultiput=\multiput
\let\!latexput=\put
 
% Redefine the LaTeX \@picture macro
\def\@picture(#1,#2)(#3,#4){%
  \@picht #2\unitlength
  \setbox\@picbox\hbox to #1\unitlength\bgroup 
  \let\endpicture=\!latexendpicture
  \let\frame=\!latexframe
  \let\linethickness=\!latexlinethickness
  \let\multiput=\!latexmultiput
  \let\put=\!latexput
  \hskip -#3\unitlength \lower #4\unitlength \hbox\bgroup}

\catcode`@=12 \catcode`!=12
SHAR_EOF
#	End of shell archive
exit 0