[comp.sources.wanted] Inverse of 4x4 Matrix

cs-ind04@penelope.Oswego.EDU (Jason E. Forbes) (08/03/90)

Before I reinvent the wheel, does anyone have a C function that can
find the inverse of a 4 by 4 matrix?


  Thanks, 

  Jason Forbes     cs-ind04@penelope.oswego.edu
		   cs-ind04@oswego.oswego.edu

Veterans Administration Hospital, Research Department
Syracuse, NY
-----------------------------------------------------

dodson@convex.COM (Dave Dodson) (08/03/90)

In article <1990Aug3.021200.21023@oswego.Oswego.EDU> cs-ind04@penelope.Oswego.EDU (Jason E. Forbes) writes:
>Before I reinvent the wheel, does anyone have a C function that can
>find the inverse of a 4 by 4 matrix?

First, I would ask why you want to invert a matrix.  While papers and books
extensively use the notation A-inverse * b to denote the solution of the
system of linear equations Ax = b, it is better to solve the system directly
than to compute the inverse and multiply it times the right hand side.  
By _better_, I mean faster and more accurate.  So if you are wanting to
solve linear equations, do it directly.

----------------------------------------------------------------------

Dave Dodson		                             dodson@convex.COM
Convex Computer Corporation      Richardson, Texas      (214) 497-4234

ted@nmsu.edu (Ted Dunning) (08/04/90)

   From: cs-ind04@penelope.Oswego.EDU (Jason E. Forbes)
   Newsgroups: comp.sources.wanted,sci.math

   Before I reinvent the wheel, does anyone have a C function that can
   find the inverse of a 4 by 4 matrix?
	...

the real answer to your question is to buy yourself a copy of
numerical recipes in c.  just for fun, though, i revved maple up and
had it spit out the inversion in fortran and then used emacs to change
it into c.  the total time including cursory debugging was about 30
minutes, and the resulting code obviously would provide a major
opportunity for a fancy optimizer, but would probably be a disaster on
a vectorizer.  but, of course, 4x4 inversion isn't what you would be
doing on a vector machine anyway.  no guarantees for numerical
stability, but anything at all should work pretty well for such small
matrices. 

it would be an interesting question to to an operation count on the
resulting compiled code and comparing the result to what a looping
version would do.  it would also be interesting to compare the number
of operations that a common subexpression optimizer could save.

so anyway, have fun with this.


/* invert a 4x4 matrix stored in a and store the result in b.  both a
   and b must be preallocated.  this code was generated automatically
   in fortran and then translated to c, so it should be thoroughly
   tested before use */

invert_4_4(a,b)
double **a, **b;
{
    double t1, t2, t4, t5, t6, t7, t8, t9, t11, t12, t14, t15, t17;
    double t19, t22, t23, t26, t27, t29, t30, t32, t33, t48, t50, t53, t56;
    double t58, t59, t61, t62, t66, t69, t71, t73, t76, t79, t84, t116, t118;
    double t121, t124, t126, t128, t133, t135, t138, t141, t143, t145, t151;
    double t153, t159, t161, t166, t168, t174, t176, t187, t189, t212, t214;

    t1 = a[2][2]*a[3][3];
    t2 = a[0][1]*t1;
    t4 = a[2][3]*a[3][2];
    t5 = a[0][1]*t4;
    t6 = a[0][2]*a[3][3];
    t7 = a[2][1]*t6;
    t8 = a[0][3]*a[3][2];
    t9 = a[2][1]*t8;
    t11 = a[0][2]*a[2][3];
    t12 = a[3][1]*t11;
    t14 = a[0][3]*a[2][2];
    t15 = a[3][1]*t14;
    t17 = a[1][1]*t1;
    t19 = a[1][1]*t4;
    t22 = a[1][2]*a[3][3];
    t23 = a[2][1]*t22;
    t26 = a[1][3]*a[3][2];
    t27 = a[2][1]*t26;
    t29 = a[1][2]*a[2][3];
    t30 = a[3][1]*t29;
    t32 = a[1][3]*a[2][2];
    t33 = a[3][1]*t32;
    t48 = a[0][1]*t22;
    t50 = a[0][1]*t26;
    t53 = a[1][1]*t6;
    t56 = a[1][1]*t8;
    t58 = a[0][2]*a[1][3];
    t59 = a[3][1]*t58;
    t61 = a[0][3]*a[1][2];
    t62 = a[3][1]*t61;
    t66 = a[0][1]*t29;
    t69 = a[0][1]*t32;
    t71 = a[1][1]*t11;
    t73 = a[1][1]*t14;
    t76 = a[2][1]*t58;
    t79 = a[2][1]*t61;
    t84 = 1/(a[0][0]*t17-a[0][0]*t19-a[0][0]*t23+a[0][0]*t27+a[0][0]*t30-a[0][0]*t33-a[1][0]*t2+a[1][0]*t5+a[1][0]*t7-a[1][0]*t9-a[1][0]*t12+a[1][0]*t15+a[2][0]*t48-a[2][0]*t50-a[2][0]*t53+a[2][0]*t56+a[2][0]*t59-a[2][0]*t62-a[3][0]*t66+a[3][0]*t69+a[3][0]*t71-a[3][0]*t73-a[3][0]*t76+a[3][0]*t79);
    t116 = a[2][1]*a[3][2];
    t118 = a[2][2]*a[3][1];
    t121 = a[0][1]*a[3][2];
    t124 = a[0][2]*a[3][1];
    t126 = a[0][1]*a[2][2];
    t128 = a[0][2]*a[2][1];
    t133 = a[2][1]*a[3][3];
    t135 = a[2][3]*a[3][1];
    t138 = a[0][1]*a[3][3];
    t141 = a[0][3]*a[3][1];
    t143 = a[0][1]*a[2][3];
    t145 = a[0][3]*a[2][1];
    t151 = a[1][1]*a[2][2];
    t153 = a[1][2]*a[2][1];
    t159 = a[0][1]*a[1][2];
    t161 = a[0][2]*a[1][1];
    t166 = a[1][1]*a[3][3];
    t168 = a[1][3]*a[3][1];
    t174 = a[0][1]*a[1][3];
    t176 = a[0][3]*a[1][1];
    t187 = a[1][1]*a[2][3];
    t189 = a[1][3]*a[2][1];
    t212 = a[1][1]*a[3][2];
    t214 = a[1][2]*a[3][1];
    b[0][1] = (-t2+t5+t7-t9-t12+t15)*t84;
    b[0][2] = -(-t48+t50+t53-t56-t59+t62)*t84;
    b[1][2] = -(a[0][0]*t22-a[0][0]*t26-a[1][0]*t6+a[1][0]*t8+a[3][0]*t58-a[3][0]*t61)*t84;
    b[1][3] = -(-a[0][0]*t29+a[0][0]*t32+a[1][0]*t11-a[1][0]*t14-a[2][0]*t58+a[2][0]*t61)*t84;
    b[3][1] = (a[0][0]*t116-a[0][0]*t118-a[2][0]*t121+a[2][0]*t124+a[3][0]*t126-a[3][0]*t128)*t84;
    b[2][1] = -(a[0][0]*t133-a[0][0]*t135-a[2][0]*t138+a[2][0]*t141+a[3][0]*t143-a[3][0]*t145)*t84;
    b[3][3] = (a[0][0]*t151-a[0][0]*t153-a[1][0]*t126+a[1][0]*t128+a[2][0]*t159-a[2][0]*t161)*t84;
    b[2][2] = (a[0][0]*t166-a[0][0]*t168-a[1][0]*t138+a[1][0]*t141+a[3][0]*t174-a[3][0]*t176)*t84;
    b[2][0] = (a[1][0]*t133-a[1][0]*t135-a[2][0]*t166+a[2][0]*t168+a[3][0]*t187-a[3][0]*t189)*t84;
    b[1][0] = -(a[1][0]*t1-a[1][0]*t4-a[2][0]*t22+a[2][0]*t26+a[3][0]*t29-a[3][0]*t32)*t84;
    b[0][3] = -(t66-t69-t71+t73+t76-t79)*t84;
    b[3][2] = -(a[0][0]*t212-a[0][0]*t214-a[1][0]*t121+a[1][0]*t124+a[3][0]*t159-a[3][0]*t161)*t84;
    b[0][0] = (t17-t19-t23+t27+t30-t33)*t84;
    b[2][3] = -(a[0][0]*t187-a[0][0]*t189-a[1][0]*t143+a[1][0]*t145+a[2][0]*t174-a[2][0]*t176)*t84;
    b[3][0] = -(a[1][0]*t116-a[1][0]*t118-a[2][0]*t212+a[2][0]*t214+a[3][0]*t151-a[3][0]*t153)*t84;
    b[1][1] = (a[0][0]*t1-a[0][0]*t4-a[2][0]*t6+a[2][0]*t8+a[3][0]*t11-a[3][0]*t14)*t84;
}

/* multiply a times b to get c.  c must be preallocated.  code
   generated in fortran by maple and then converted semi-automatically
   to c.  it may well be buggy. */
mul_4_4(a,b,c)
double **a, **b, **c;
{
    c[0][1] = a[0][0]*b[0][1]+a[0][1]*b[1][1]+a[0][2]*b[2][1]+a[0][3]*b[3][1];
    c[0][2] = a[0][0]*b[0][2]+a[0][1]*b[1][2]+a[0][2]*b[2][2]+a[0][3]*b[3][2];
    c[1][2] = a[1][0]*b[0][2]+a[1][1]*b[1][2]+a[1][2]*b[2][2]+a[1][3]*b[3][2];
    c[1][3] = a[1][0]*b[0][3]+a[1][1]*b[1][3]+a[1][2]*b[2][3]+a[1][3]*b[3][3];
    c[3][1] = a[3][0]*b[0][1]+a[3][1]*b[1][1]+a[3][2]*b[2][1]+a[3][3]*b[3][1];
    c[2][1] = a[2][0]*b[0][1]+a[2][1]*b[1][1]+a[2][2]*b[2][1]+a[2][3]*b[3][1];
    c[3][3] = a[3][0]*b[0][3]+a[3][1]*b[1][3]+a[3][2]*b[2][3]+a[3][3]*b[3][3];
    c[2][2] = a[2][0]*b[0][2]+a[2][1]*b[1][2]+a[2][2]*b[2][2]+a[2][3]*b[3][2];
    c[2][0] = a[2][0]*b[0][0]+a[2][1]*b[1][0]+a[2][2]*b[2][0]+a[2][3]*b[3][0];
    c[1][0] = a[1][0]*b[0][0]+a[1][1]*b[1][0]+a[1][2]*b[2][0]+a[1][3]*b[3][0];
    c[0][3] = a[0][0]*b[0][3]+a[0][1]*b[1][3]+a[0][2]*b[2][3]+a[0][3]*b[3][3];
    c[3][2] = a[3][0]*b[0][2]+a[3][1]*b[1][2]+a[3][2]*b[2][2]+a[3][3]*b[3][2];
    c[0][0] = a[0][0]*b[0][0]+a[0][1]*b[1][0]+a[0][2]*b[2][0]+a[0][3]*b[3][0];
    c[2][3] = a[2][0]*b[0][3]+a[2][1]*b[1][3]+a[2][2]*b[2][3]+a[2][3]*b[3][3];
    c[3][0] = a[3][0]*b[0][0]+a[3][1]*b[1][0]+a[3][2]*b[2][0]+a[3][3]*b[3][0];
    c[1][1] = a[1][0]*b[0][1]+a[1][1]*b[1][1]+a[1][2]*b[2][1]+a[1][3]*b[3][1];
}

/* simple cursory test of the inversion and multiplication routines */
main()
{
    double **a,**b,**c;
    void *calloc();
    int i,j;

    a = calloc(4,sizeof(a[0]));
    b = calloc(4,sizeof(b[0]));
    c = calloc(4,sizeof(c[0]));

    for (i=0;i<4;i++) {
	a[i] = calloc(4,sizeof(a[0][0]));
	b[i] = calloc(4,sizeof(b[0][0]));
	c[i] = calloc(4,sizeof(c[0][0]));
	for (j=0;j<4;j++) {
	    a[i][j] = random()%1000;
	}
    }

    invert_4_4(a,b);
    mul_4_4(a,b,c);

    for (i=0;i<4;i++) {
	for (j=0;j<4;j++) {
	    printf("%19.17lf ", c[i][j]);
	}
	printf("\n");
    }
}

    
    

--
	Offer void except where prohibited by law.