sumane@anaconda.stanford.edu (Thilaka Sumanaweera) (08/17/89)
I think the following is a solution to the problem of drawing
the circumcircle of a triangle:
A
/\
/ \
/ \ Let AB = c, BC = a, AC = b,
/ \ s = a + b + c;
b / \
/ \ c
/ O \
/ | \
/ | \
/ | \
/ | \
/ |90 \
C-----/-----|-----/------B
a X
Then the radius of the circumcircle, R is given by:
square(a).square(b).square(c)
square(R) = ----------------------------------
s(s - 2a)(s - 2b)(s - 2c)
and OX = OC.sin(OCX) = R.sin(OCX) where
s(s - 2a)
sin(OCX) = ----------- - 1
2.b.c
so vectorially,
B + C
O = ----- + OX.q where q is a unit vector perpendicular to BC
2 and towards the inside of the triangle.
Thilaka