sumane@anaconda.stanford.edu (Thilaka Sumanaweera) (08/17/89)
I think the following is a solution to the problem of drawing the circumcircle of a triangle: A /\ / \ / \ Let AB = c, BC = a, AC = b, / \ s = a + b + c; b / \ / \ c / O \ / | \ / | \ / | \ / | \ / |90 \ C-----/-----|-----/------B a X Then the radius of the circumcircle, R is given by: square(a).square(b).square(c) square(R) = ---------------------------------- s(s - 2a)(s - 2b)(s - 2c) and OX = OC.sin(OCX) = R.sin(OCX) where s(s - 2a) sin(OCX) = ----------- - 1 2.b.c so vectorially, B + C O = ----- + OX.q where q is a unit vector perpendicular to BC 2 and towards the inside of the triangle. Thilaka