[comp.sys.m6809] Bison.os9 Part 3 of 5.

jimomura@lsuc.UUCP (09/13/87)

#	This is a shell archive.
#	Remove everything above and including the cut line.
#	Then run the rest of the file through sh.
#----cut here-----cut here-----cut here-----cut here----#
#!/bin/sh
# shar:    Shell Archiver
#	Run the following text with /bin/sh to create:
#	lr0.c
#	machine.h
#	main.c
#	new.h
#	nullable.c
#	output.c
#	print.c
# By:	Jim Omura ()
cat << \SHAR_EOF > lr0.c
/* Generate the nondeterministic finite state machine for bison,
   Copyright (C) 1984, 1986 Bob Corbett and Free Software Foundation, Inc.

BISON is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY.  No author or distributor accepts responsibility to anyone
for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing.
Refer to the BISON General Public License for full details.

Everyone is granted permission to copy, modify and redistribute BISON,
but only under the conditions described in the BISON General Public
License.  A copy of this license is supposed to have been given to you
along with BISON so you can know your rights and responsibilities.  It
should be in a file named COPYING.  Among other things, the copyright
notice and this notice must be preserved on all copies.

 In other words, you are welcome to use, share and improve this program.
 You are forbidden to forbid anyone else to use, share and improve
 what you give them.   Help stamp out software-hoarding!  */

/* See comments in state.h for the data structures that represent it.
   The entry point is generate_states.  */

#include <stdio.h>
#include "machine.h"
#include "new.h"
#include "gram.h"
#include "state.h"


extern char *nullable;
extern short *itemset;
extern short *itemsetend;


int nstates;
int final_state;
core *first_state;
shifts *first_shift;
reductions *first_reduction;

int get_state();
core *new_state();

static core *this_state;
static core *last_state;
static shifts *last_shift;
static reductions *last_reduction;

static int nshifts;
static short *shift_symbol;

static short *redset;
static short *shiftset;

static short **kernel_base;
static short **kernel_end;
static short *kernel_items;

/* hash table for states, to recognize equivalent ones.  */

#define STATE_TABLE_SIZE        1009
static core **state_table;



allocate_itemsets()
{
  register short *itemp;
  register int symbol;
  register int i;
  register count;
  register int max;
  register short *symbol_count;

  count = 0;
  symbol_count = NEW2(nsyms, short);

  itemp = ritem;
  symbol = *itemp++;
  while (symbol)
    {
      if (symbol > 0)
        {
          count++;
          symbol_count[symbol]++;
        }
      symbol = *itemp++;
    }

  /* see comments before new-itemset.  All the vectors of items
     live inside kernel_items.  The number of active items after
     some symbol cannot be more than the number of times that symbol
     appears as an item, which is symbol_count[symbol].
     We allocate that much space for each symbol.  */

  kernel_base = NEW2(nsyms, short *);
  kernel_items = NEW2(count, short);

  count = 0;
  max = 0;
  for (i = 0; i < nsyms; i++)
    {
      kernel_base[i] = kernel_items + count;
      count += symbol_count[i];
      if (max < symbol_count[i])
        max = symbol_count[i];
    }

  shift_symbol = symbol_count;
  kernel_end = NEW2(nsyms, short *);
}



allocate_storage()
{
  allocate_itemsets();

  shiftset = NEW2(nsyms, short);
  redset = NEW2(nrules + 1, short);
  state_table = NEW2(STATE_TABLE_SIZE, core *);
}



free_storage()
{
  FREE(shift_symbol);
  FREE(redset);
  FREE(shiftset);
  FREE(kernel_base);
  FREE(kernel_end);
  FREE(kernel_items);
  FREE(state_table);
}



/* compute the nondeterministic finite state machine (see state.h for details)
from the grammar.  */

generate_states()
{
  allocate_storage();
  initialize_closure(nitems);
  initialize_states();

  while (this_state)
    {
      /* Set up ruleset and itemset for the transitions out of this state.
         ruleset gets a 1 bit for each rule that could reduce now.
         itemset gets a vector of all the items that could be accepted next.  */
      closure(this_state->items, this_state->nitems);
      /* record the reductions allowed out of this state */
      save_reductions();
      /* find the itemsets of the states that shifts can reach */
      new_itemsets();
      /* find or create the core structures for those states */
      append_states();

      /* create the shifts structures for the shifts to those states,
         now that the state numbers transitioning to are known */
      if (nshifts > 0)
        save_shifts();

      /* states are queued when they are created; process them all */
      this_state = this_state->next;
    }

  /* discard various storage */
  finalize_closure();
  free_storage();

  /* set up initial and final states as parser wants them */
  augment_automaton();
}



/* Find which symbols can be shifted in the current state,
   and for each one record which items would be active after that shift.
   Uses the contents of itemset.
   shift_symbol is set to a vector of the symbols that can be shifted.
   For each symbol in the grammer, kernel_base[symbol] points to
   a vector of item numbers activated if that symbol is shifted,
   and kernel_end[symbol] points after the end of that vector.  */

new_itemsets()
{
  register int i;
  register int shiftcount;
  register short *isp;
  register short *ksp;
  register int symbol;

#ifdef  TRACE
  fprintf(stderr, "Entering new_itemsets\n");
#endif

  for (i = 0; i < nsyms; i++)
    kernel_end[i] = NULL;

  shiftcount = 0;

  isp = itemset;

  while (isp < itemsetend)
    {
      i = *isp++;
      symbol = ritem[i];
      if (symbol > 0)
        {
          ksp = kernel_end[symbol];

          if (!ksp)
            {
              shift_symbol[shiftcount++] = symbol;
              ksp = kernel_base[symbol];
            }

          *ksp++ = i + 1;
          kernel_end[symbol] = ksp;
        }
    }

  nshifts = shiftcount;
}



/* Use the information computed by new_itemset to find the state numbers
   reached by each shift transition from the current state.

   shiftset is set up as a vector of state numbers of those states.  */

append_states()
{
  register int i;
  register int j;
  register int symbol;

#ifdef  TRACE
  fprintf(stderr, "Entering append_states\n");
#endif

  /* first sort shift_symbol into increasing order */

  for (i = 1; i < nshifts; i++)
    {
      symbol = shift_symbol[i];
      j = i;
      while (j > 0 && shift_symbol[j - 1] > symbol)
        {
          shift_symbol[j] = shift_symbol[j - 1];
          j--;
        }
      shift_symbol[j] = symbol;
    }

  for (i = 0; i < nshifts; i++)
    {
      symbol = shift_symbol[i];
      shiftset[i] = get_state(symbol);
    }
}



/* find the state number for the state we would get to
(from the current state) by shifting symbol.
Create a new state if no equivalent one exists already.
Used by append_states  */

int
get_state(symbol)
int symbol;
{
  register int key;
  register short *isp1;
  register short *isp2;
  register short *iend;
  register core *sp;
  register int found;

  int n;

#ifdef  TRACE
  fprintf(stderr, "Entering get_state, symbol = %d\n", symbol);
#endif

  isp1 = kernel_base[symbol];
  iend = kernel_end[symbol];
  n = iend - isp1;

  /* add up the target state's active item numbers to get a hash key */
  key = 0;
  while (isp1 < iend)
    key += *isp1++;

  key = key % STATE_TABLE_SIZE;

  sp = state_table[key];

  if (sp)
    {
      found = 0;
      while (!found)
        {
          if (sp->nitems == n)
            {
              found = 1;
              isp1 = kernel_base[symbol];
              isp2 = sp->items;

              while (found && isp1 < iend)
                {
                  if (*isp1++ != *isp2++)
                    found = 0;
                }
            }

          if (!found)
            {
              if (sp->link)
                {
                  sp = sp->link;
                }
              else   /* bucket exhausted and no match */
                {
                  sp = sp->link = new_state(symbol);
                  found = 1;
                }
            }
        }
    }
  else      /* bucket is empty */
    {
      state_table[key] = sp = new_state(symbol);
    }

  return (sp->number);
}



/* subroutine of get_state.  create a new state for those items, if necessary.  */

core *
new_state(symbol)
int symbol;
{
  register int n;
  register core *p;
  register short *isp1;
  register short *isp2;
  register short *iend;

#ifdef  TRACE
  fprintf(stderr, "Entering new_state, symbol = %d\n", symbol);
#endif

  if (nstates >= MAXSHORT)
    toomany("states");

  isp1 = kernel_base[symbol];
  iend = kernel_end[symbol];
  n = iend - isp1;

  p = (core *) allocate((unsigned) (sizeof(core) + (n - 1) * sizeof(short)));
  p->accessing_symbol = symbol;
  p->number = nstates;
  p->nitems = n;

  isp2 = p->items;
  while (isp1 < iend)
    *isp2++ = *isp1++;

  last_state->next = p;
  last_state = p;

  nstates++;

  return (p);
}



initialize_states()
{
  register core *p;
/*  register unsigned *rp1; JF unused */
/*  register unsigned *rp2; JF unused */
/*  register unsigned *rend; JF unused */

  p = (core *) allocate((unsigned) (sizeof(core) - sizeof(short)));
  first_state = last_state = this_state = p;
  nstates = 1;
}



save_shifts()
{
  register shifts *p;
  register short *sp1;
  register short *sp2;
  register short *send;

  p = (shifts *) allocate((unsigned) (sizeof(shifts) +
                        (nshifts - 1) * sizeof(short)));

  p->number = this_state->number;
  p->nshifts = nshifts;

  sp1 = shiftset;
  sp2 = p->shifts;
  send = shiftset + nshifts;

  while (sp1 < send)
    *sp2++ = *sp1++;

  if (last_shift)
    {
      last_shift->next = p;
      last_shift = p;
    }
  else
    {
      first_shift = p;
      last_shift = p;
    }
}



/* find which rules can be used for reduction transitions from the current state
   and make a reductions structure for the state to record their rule numbers.  */

save_reductions()
{
  register short *isp;
  register short *rp1;
  register short *rp2;
  register int item;
  register int count;
  register reductions *p;

  short *rend;

  /* find and count the active items that represent ends of rules */

  count = 0;
  for (isp = itemset; isp < itemsetend; isp++)
    {
      item = ritem[*isp];
      if (item < 0)
        {
          redset[count++] = -item;
        }
    }

  /* make a reductions structure and copy the data into it.  */

  if (count)
    {
      p = (reductions *) allocate((unsigned) (sizeof(reductions) +
                                        (count - 1) * sizeof(short)));

      p->number = this_state->number;
      p->nreds = count;

      rp1 = redset;
      rp2 = p->rules;
      rend = rp1 + count;

      while (rp1 < rend)
        *rp2++ = *rp1++;

      if (last_reduction)
        {
          last_reduction->next = p;
          last_reduction = p;
        }
      else
        {
          first_reduction = p;
          last_reduction = p;
        }
    }
}



/* Make sure that the initial state has a shift that accepts the
grammar's start symbol and goes to the next-to-final state,
which has a shift going to the final state, which has a shift
to the termination state.
Create such states and shifts if they don't happen to exist already.  */

augment_automaton()
{
  register int i;
  register int k;
/*  register int found; JF unused */
  register core *statep;
  register shifts *sp;
  register shifts *sp2;
  register shifts *sp1;

  sp = first_shift;

  if (sp)
    {
      if (sp->number == 0)
        {
          k = sp->nshifts;
          statep = first_state->next;

          while (statep->accessing_symbol < start_symbol
                  && statep->number < k)
            statep = statep->next;

          if (statep->accessing_symbol == start_symbol)
            {
              k = statep->number;

              while (sp->number < k)
                {
                  sp1 = sp;
                  sp = sp->next;
                }

              if (sp->number == k)
                {
                  sp2 = (shifts *) allocate((unsigned) (sizeof(shifts)
                                        + sp->nshifts * sizeof(short)));
                  sp2->next = sp->next;
                  sp2->number = k;
                  sp2->nshifts = sp->nshifts + 1;
                  sp2->shifts[0] = nstates;
                  for (i = sp->nshifts; i > 0; i--)
                    sp2->shifts[i] = sp->shifts[i - 1];

                  sp1->next = sp2;
                  FREE(sp);
                }
              else
                {
                  sp2 = NEW(shifts);
                  sp2->next = sp;
                  sp2->number = k;
                  sp2->nshifts = 1;
                  sp2->shifts[0] = nstates;

                  sp1->next = sp2;
                  if (!sp)
                    last_shift = sp2;
                }
            }
          else
            {
              k = statep->number;
              sp = first_shift;

              sp2 = (shifts *) allocate((unsigned) (sizeof(shifts)
                                        + sp->nshifts * sizeof(short)));
              sp2->next = sp->next;
              sp2->nshifts = sp->nshifts + 1;

              for (i = 0; i < k; i++)
                sp2->shifts[i] = sp->shifts[i];

              sp2->shifts[k] = nstates;

              for (i = k; i < sp->nshifts; i++)
                sp2->shifts[i + 1] = sp->shifts[i];

              first_shift = sp2;
              if (last_shift == sp)
                last_shift = sp2;

              FREE(sp);

              insert_start_shift();
            }
        }
      else
        {
          sp = NEW(shifts);
          sp->next = first_shift;
          sp->nshifts = 1;
          sp->shifts[0] = nstates;

          first_shift = sp;

          insert_start_shift();
        }
    }
  else
    {
      sp = NEW(shifts);
      sp->nshifts = 1;
      sp->shifts[0] = nstates;

      first_shift = sp;
      last_shift = sp;

      insert_start_shift();
    }

  statep = (core *) allocate((unsigned) (sizeof(core) - sizeof(short)));
  statep->number = nstates;
  last_state->next = statep;
  last_state = statep;

  sp = NEW(shifts);
  sp->number = nstates++;
  sp->nshifts = 1;
  sp->shifts[0] = nstates;
  last_shift->next = sp;
  last_shift = sp;

  final_state = nstates;

  statep = (core *) allocate((unsigned) (sizeof(core) - sizeof(short)));
  statep->number = nstates++;
  last_state->next = statep;
  last_state = statep;
}


/* subroutine of augment_automaton */

insert_start_shift()
{
  register core *statep;
  register shifts *sp;

  statep = (core *) allocate((unsigned) (sizeof(core) - sizeof(short)));
  statep->number = nstates;
  statep->accessing_symbol = start_symbol;

  last_state->next = statep;
  last_state = statep;

  sp = NEW(shifts);
  sp->number = nstates++;
  sp->nshifts = 1;
  sp->shifts[0] = nstates;

  last_shift->next = sp;
  last_shift = sp;
}
SHAR_EOF
cat << \SHAR_EOF > machine.h
/* Define machine-dependencies for bison,
   Copyright (C) 1984 Bob Corbett and Free Software Foundation, Inc.

BISON is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY.  No author or distributor accepts responsibility to anyone
for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing.
Refer to the BISON General Public License for full details.

Everyone is granted permission to copy, modify and redistribute BISON,
but only under the conditions described in the BISON General Public
License.  A copy of this license is supposed to have been given to you
along with BISON so you can know your rights and responsibilities.  It
should be in a file named COPYING.  Among other things, the copyright
notice and this notice must be preserved on all copies.

 In other words, you are welcome to use, share and improve this program.
 You are forbidden to forbid anyone else to use, share and improve
 what you give them.   Help stamp out software-hoarding!  */

#define MAXSHORT        32767
#define MINSHORT        -32768

#define BITS_PER_WORD   32
#define WORDSIZE(n)     (((n) + 31) / 32)
#define SETBIT(x, i)    ((x)[(i)>>5] |= (1<<((i) & 31)))
SHAR_EOF
cat << \SHAR_EOF > main.c
/* Top level entry point of bison,
   Copyright (C) 1984, 1986 Bob Corbett and Free Software Foundation, Inc.

BISON is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY.  No author or distributor accepts responsibility to anyone
for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing.
Refer to the BISON General Public License for full details.

Everyone is granted permission to copy, modify and redistribute BISON,
but only under the conditions described in the BISON General Public
License.  A copy of this license is supposed to have been given to you
along with BISON so you can know your rights and responsibilities.  It
should be in a file named COPYING.  Among other things, the copyright
notice and this notice must be preserved on all copies.

 In other words, you are welcome to use, share and improve this program.
 You are forbidden to forbid anyone else to use, share and improve
 what you give them.   Help stamp out software-hoarding!  */

#include <stdio.h>
#include "machine.h"    /* JF for MAXSHORT */

extern  int lineno;
extern  int verboseflag;


main(argc, argv)
int argc;
char *argv[];
{
  lineno = 0;
  getargs(argc, argv);
  openfiles();

  /* read the input.  Copy some parts of it to fguard, faction, ftable and fattrs.
     In file reader.
     The other parts are recorded in the grammar; see gram.h.  */
  reader();

  /* record other info about the grammar.  In files derives and nullable.  */
  set_derives();
  set_nullable();

  /* convert to nondeterministic finite state machine.  In file LR0.
     See state.h for more info.  */
  generate_states();

  /* make it deterministic.  In file lalr.  */
  lalr();

  /* Find and record any conflicts: places where one token of lookahead is not
     enough to disambiguate the parsing.  In file conflicts.
     Currently this does not do anything to resolve them;
     the trivial form of conflict resolution that exists is done in output.  */
  initialize_conflicts();

  /* print information about results, if requested.  In file print. */
  if (verboseflag)
    verbose();
  else
    terse();

  /* output the tables and the parser to ftable.  In file output. */
  output();
  done(0);
}



/* functions to report errors which prevent a parser from being generated */

/* JF changed to output error message in standard format.  Just like CC */
fatal(s)
char *s;
{
  extern char *infile;

  fprintf(stderr, "\"%s\", line %d: %s\n", infile, lineno, s);
  done(1);
}


/* JF changed to accept/deal with variable args.  Is a real kludge since
   we don't support _doprnt calls */
/*VARARGS1*/
fatals(fmt,x1,x2,x3,x4,x5,x6,x7,x8)
char *fmt;
{
  char buffer[200];

  sprintf(buffer, fmt, x1,x2,x3,x4,x5,x6,x7,x8);
  fatal(buffer);
}



toomany(s)
char *s;
{
  char buffer[200];

        /* JF new msg */
  sprintf(buffer, "limit of %d exceeded, too many %s", MAXSHORT, s);
  fatal(buffer);
}



berror(s)
char *s;
{
  fprintf(stderr, "internal error, %s\n", s);
  abort();
}
SHAR_EOF
cat << \SHAR_EOF > new.h
/* Storage allocation interface for bison,
   Copyright (C) 1984 Bob Corbett and Free Software Foundation, Inc.

BISON is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY.  No author or distributor accepts responsibility to anyone
for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing.
Refer to the BISON General Public License for full details.

Everyone is granted permission to copy, modify and redistribute BISON,
but only under the conditions described in the BISON General Public
License.  A copy of this license is supposed to have been given to you
along with BISON so you can know your rights and responsibilities.  It
should be in a file named COPYING.  Among other things, the copyright
notice and this notice must be preserved on all copies.

 In other words, you are welcome to use, share and improve this program.
 You are forbidden to forbid anyone else to use, share and improve
 what you give them.   Help stamp out software-hoarding!  */

#define NEW(t)          ((t *) allocate((unsigned) sizeof(t)))
#define NEW2(n, t)      ((t *) allocate((unsigned) ((n) * sizeof(t))))
#define FREE(x)         if (x != NULL) free((char *) (x))

extern  char *allocate();

/* E O F */
SHAR_EOF
cat << \SHAR_EOF > nullable.c
/* Part of the bison parser generator,
   Copyright (C) 1984 Bob Corbett and Free Software Foundation, Inc.

BISON is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY.  No author or distributor accepts responsibility to anyone
for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing.
Refer to the BISON General Public License for full details.

Everyone is granted permission to copy, modify and redistribute BISON,
but only under the conditions described in the BISON General Public
License.  A copy of this license is supposed to have been given to you
along with BISON so you can know your rights and responsibilities.  It
should be in a file named COPYING.  Among other things, the copyright
notice and this notice must be preserved on all copies.

 In other words, you are welcome to use, share and improve this program.
 You are forbidden to forbid anyone else to use, share and improve
 what you give them.   Help stamp out software-hoarding!  */

/* set up nullable, a vector saying which nonterminals can expand into the null string.
   nullable[i - ntokens] is nonzero if symbol i can do so.  */

#include <stdio.h>
#include "types.h"
#include "gram.h"
#include "new.h"


char *nullable;


set_nullable()
{
  register short *r;
  register short *s1;
  register short *s2;
  register int ruleno;
  register int symbol;
  register shorts *p;

  short *squeue;
  short *rcount;
  shorts **rsets;
  shorts *relts;
  char any_tokens;
  short *r1;

#ifdef  TRACE
  fprintf(stderr, "Entering set_nullable");
#endif

  nullable = NEW2(nvars, char) - ntokens;

  squeue = NEW2(nvars, short);
  s1 = s2 = squeue;

  rcount = NEW2(nrules + 1, short);
  rsets = NEW2(nvars, shorts *) - ntokens;
  relts = NEW2(nitems + nvars + 1, shorts);
  p = relts;

  r = ritem;
  while (*r)
    {
      if (*r < 0)
        {
          symbol = rlhs[-(*r++)];
          if (!nullable[symbol])
            {
              nullable[symbol] = 1;
              *s2++ = symbol;
            }
        }
      else
        {
          r1 = r;
          any_tokens = 0;
          for (symbol = *r++; symbol > 0; symbol = *r++)
            {
              if (ISTOKEN(symbol))
                any_tokens = 1;
            }

          if (!any_tokens)
            {
              ruleno = -symbol;
              r = r1;
              for (symbol = *r++; symbol > 0; symbol = *r++)
                {
                  rcount[ruleno]++;
                  p->next = rsets[symbol];
                  p->value = ruleno;
                  rsets[symbol] = p;
                  p++;
                }
            }
        }
    }

  while (s1 < s2)
    {
      p = rsets[*s1++];
      while (p)
        {
          ruleno = p->value;
          p = p->next;
          if (--rcount[ruleno] == 0)
            {
              symbol = rlhs[ruleno];
              if (!nullable[symbol])
                {
                  nullable[symbol] = 1;
                  *s2++ = symbol;
                }
            }
        }
    }

  FREE(squeue);
  FREE(rcount);
  FREE(rsets + ntokens);
  FREE(relts);
}


free_nullable()
{
  FREE(nullable + ntokens);
}
SHAR_EOF
cat << \SHAR_EOF > output.c
/* Output the generated parsing program for bison,
   Copyright (C) 1984, 1986 Bob Corbett and Free Software Foundation, Inc.

BISON is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY.  No author or distributor accepts responsibility to anyone
for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing.
Refer to the BISON General Public License for full details.

Everyone is granted permission to copy, modify and redistribute BISON,
but only under the conditions described in the BISON General Public
License.  A copy of this license is supposed to have been given to you
along with BISON so you can know your rights and responsibilities.  It
should be in a file named COPYING.  Among other things, the copyright
notice and this notice must be preserved on all copies.

 In other words, you are welcome to use, share and improve this program.
 You are forbidden to forbid anyone else to use, share and improve
 what you give them.   Help stamp out software-hoarding!  */

/* functions to output parsing data to various files.  Entries are:

  output_headers ()

Output constant strings to the beginning of certain files.

  output_trailers()

Output constant strings to the ends of certain files.

  output ()

Output the parsing tables and the parser code to ftable.

The parser tables consist of:  (starred ones needed only for the semantic parser)

yytranslate = vector mapping yylex's token numbers into bison's token numbers.

yytname = vector of string-names indexed by bison token number

yyrline = vector of line-numbers of all rules.  For yydebug printouts.

* yyrhs = vector of items of all rules.
        This is exactly what ritems contains.

* yyprhs[r] = index in yyrhs of first item for rule r.

yyr1[r] = symbol number of symbol that rule r derives.

yyr2[r] = number of symbols composing right hand side of rule r.

* yystos[s] = the symbol number of the symbol that leads to state s.

yydefact[s] = default rule to reduce with in state s,
              when yytable doesn't specify something else to do.
              Zero means the default is an error.

yydefgoto[i] = default state to go to after a reduction of a rule that
               generates variable ntokens + i, except when yytable
               specifies something else to do.

yypact[s] = index in yytable of the portion describing state s.
            The lookahed token's type is used to index that portion
            to find out what to do.

            If the value in yytable is positive,
            we shift the token and go to that state.

            If the value is negative, it is minus a rule number to reduce by.

            If the value is zero, the default action from yydefact[s] is used.

yypgoto[i] = the index in yytable of the portion describing 
             what to do after reducing a rule that derives variable i + ntokens.
             This portion is indexed by the parser state number
             as of before the text for this nonterminal was read.
             The value from yytable is the state to go to.

yytable = a vector filled with portions for different uses,
          found via yypact and yypgoto.

yycheck = a vector indexed in parallel with yytable.
          It indicates, in a roundabout way, the bounds of the
          portion you are trying to examine.

          Suppose that the portion of yytable starts at index p
          and the index to be examined within the portion is i.
          Then if yycheck[p+i] != i, i is outside the bounds
          of what is actually allocated, and the default
          (from yydefact or yydefgoto) should be used.
          Otherwise, yytable[p+i] should be used.

YYFINAL = the state number of the termination state.
YYFLAG = most negative short int.  Used to flag ??
YYNTBASE = ntokens.

*/

#include <stdio.h>
#include "machine.h"
#include "new.h"
#include "files.h"
#include "gram.h"
#include "state.h"

#define MAXTABLE 32767


extern char **tags;
extern int tokensetsize;
extern int final_state;
extern core **state_table;
extern shifts **shift_table;
extern errs **err_table;
extern reductions **reduction_table;
extern short *accessing_symbol;
extern unsigned *LA;
extern short *LAruleno;
extern short *lookaheads;
extern char *consistent;
extern short *goto_map;
extern short *from_state;
extern short *to_state;


static int nvectors;
static int nentries;
static short **froms;
static short **tos;
static short *tally;
static short *width;
static short *actrow;
static short *state_count;
static short *order;
static short *base;
static short *pos;
static short *table;
static short *check;
static int lowzero;
static int high;



#define GUARDSTR        "\n#include \"%s\"\nextern int yyerror;\n\
extern int yycost;\nextern char * yymsg;\nextern YYSTYPE yyval;\n\n\
yyguard(n, yyvsp, yylsp)\nregister int n;\nregister YYSTYPE *yyvsp;\n\
register YYLTYPE *yylsp;\n\
{\n  yyerror = 0;\nyycost = 0;\n  yymsg = 0;\nswitch (n)\n    {"

#define ACTSTR          "\n#include \"%s\"\nextern YYSTYPE yyval;\
\nextern int yychar;\
yyaction(n, yyvsp, yylsp)\nregister int n;\nregister YYSTYPE *yyvsp;\n\
register YYLTYPE *yylsp;\n{\n  switch (n)\n{"

#define ACTSTR_SIMPLE   "\n  switch (yyn) {\n"



output_headers()
{
  if (semantic_parser)
    fprintf(fguard, GUARDSTR, attrsfile);
  fprintf(faction, (semantic_parser ? ACTSTR : ACTSTR_SIMPLE), attrsfile);
/*  if (semantic_parser)        JF moved this below
    fprintf(ftable, "#include \"%s\"\n", attrsfile);
    fprintf(ftable, "#include <stdio.h>\n\n"); */
}

output_trailers()
{
  if (semantic_parser)
    {
      fprintf(fguard, "\n    }\n}\n");
      fprintf(faction, "\n    }\n}\n");
    }
  else
    fprintf(faction, "\n}\n");
}


output()
{
  int c;

  /* output_token_defines(ftable);      /* JF put out token defines FIRST */
  if(!semantic_parser)          /* JF Put out other stuff */
    {
      rewind(fattrs);
      while((c=getc(fattrs))!=EOF)
        putc(c,ftable);
    }
  /* output_program();  /* JF do it NOW */
  if (semantic_parser)
    fprintf(ftable, "#include \"%s\"\n", attrsfile);
#ifdef OSK
  fprintf(ftable, "#ifndef stdin\n");
  fprintf(ftable, "#include <stdio.h>\n");
  fprintf(ftable, "#endif\n\n");
#else
  fprintf(ftable, "#include <stdio.h>\n\n");
#endif

  free_itemsets();
  output_defines();
  output_token_translations();
  if (semantic_parser)
    output_gram();
  FREE(ritem);
  if (semantic_parser)
    output_stos();
  output_rule_data();
  output_actions();
  output_parser();
  output_program();
}

output_token_translations()
{
  register int i, j;
/*   register short *sp; JF unused */

  if (translations)
    {
      fprintf(ftable, "\n#define YYTRANSLATE(x) (yytranslate[x])\n");
    
      if (ntokens < 127)  /* play it very safe; check maximum element value.  */
        fprintf(ftable, "\nstatic char yytranslate[] = {     0");
      else
        fprintf(ftable, "\nstatic short yytranslate[] = {     0");
    
      j = 10;
      for (i = 1; i <= max_user_token_number; i++)
        {
          putc(',', ftable);
    
          if (j >= 10)
            {
              putc('\n', ftable);
              j = 1;
            }
          else
            {
              j++;
            }
    
          fprintf(ftable, "%6d", token_translations[i]);
        }
    
      fprintf(ftable, "\n};\n");
    }
  else
    {
      fprintf(ftable, "\n#define YYTRANSLATE(x) (x)\n");
    } 
}



output_gram()
{
  register int i;
  register int j;
  register short *sp;

  fprintf(ftable, "\nstatic short yyprhs[] = {     0");

  j = 10;
  for (i = 1; i <= nrules; i++)
    {
      putc(',', ftable);

      if (j >= 10)
        {
          putc('\n', ftable);
          j = 1;
        }
      else
        {
          j++;
        }

      fprintf(ftable, "%6d", rrhs[i]);
    }

  fprintf(ftable, "\n};\n\nstatic short yyrhs[] = {%6d", ritem[0]);

  j = 10;
  for (sp = ritem + 1; *sp; sp++)
    {
      putc(',', ftable);

      if (j >= 10)
        {
          putc('\n', ftable);
          j = 1;
        }
      else
        {
          j++;
        }

      if (*sp > 0)
        fprintf(ftable, "%6d", *sp);
      else
        fprintf(ftable, "     0");
    }

  fprintf(ftable, "\n};\n");
}



output_stos()
{
  register int i;
  register int j;

  fprintf(ftable, "\nstatic short yystos[] = {     0");

  j = 10;
  for (i = 1; i < nstates; i++)
    {
      putc(',', ftable);

      if (j >= 10)
        {
          putc('\n', ftable);
          j = 1;
        }
      else
        {
          j++;
        }

      fprintf(ftable, "%6d", accessing_symbol[i]);
    }

  fprintf(ftable, "\n};\n");
}



output_rule_data()
{
  register int i;
  register int j;

  fprintf(ftable, "\nstatic short yyrline[] = {     0");

  j = 10;
  for (i = 1; i <= nrules; i++)
    {
      putc(',', ftable);

      if (j >= 10)
        {
          putc('\n', ftable);
          j = 1;
        }
      else
        {
          j++;
        }

      fprintf(ftable, "%6d", rline[i]);
    }

  fprintf(ftable, "\n};\n\nstatic char * yytname[] = {     0");

  j = 10;
  for (i = 1; i <= ntokens; i++)
    {
      register char *p;
      putc(',', ftable);

      if (j >= 10)
        {
          putc('\n', ftable);
          j = 1;
        }
      else
        {
          j++;
        }

      putc ('\"', ftable);

      for (p = tags[i]; *p; p++)
        if (*p == '"' || *p == '\\')
          fprintf(ftable, "\\%c", *p);
        else if (*p == '\n')
          fprintf(ftable, "\\n");
        else if (*p == '\t')
          fprintf(ftable, "\\t");
        else if (*p == '\b')
          fprintf(ftable, "\\b");
        else if (*p < 040 || *p >= 0177)
          fprintf(ftable, "\\%03o", *p);
        else
          putc(*p, ftable);

      putc ('\"', ftable);
    }

  fprintf(ftable, "\n};\n\nstatic short yyr1[] = {     0");

  j = 10;
  for (i = 1; i <= nrules; i++)
    {
      putc(',', ftable);

      if (j >= 10)
        {
          putc('\n', ftable);
          j = 1;
        }
      else
        {
          j++;
        }

      fprintf(ftable, "%6d", rlhs[i]);
    }

  FREE(rlhs + 1);

  fprintf(ftable, "\n};\n\nstatic short yyr2[] = {     0");

  j = 10;
  for (i = 1; i < nrules; i++)
    {
      putc(',', ftable);

      if (j >= 10)
        {
          putc('\n', ftable);
          j = 1;
        }
      else
        {
          j++;
        }

      fprintf(ftable, "%6d", rrhs[i + 1] - rrhs[i] - 1);
    }

  putc(',', ftable);
  if (j >= 10)
    putc('\n', ftable);

  fprintf(ftable, "%6d\n};\n", nitems - rrhs[nrules] - 1);
  FREE(rrhs + 1);
}



output_defines()
{
  fprintf(ftable, "\n\n#define\tYYFINAL\t\t%d\n", final_state);
  fprintf(ftable, "#define\tYYFLAG\t\t%d\n", MINSHORT);
  fprintf(ftable, "#define\tYYNTBASE\t%d\n", ntokens);
}



/* compute and output yydefact, yydefgoto, yypact, yypgoto, yytable and yycheck.  */

output_actions()
{
  nvectors = nstates + nvars;

  froms = NEW2(nvectors, short *);
  tos = NEW2(nvectors, short *);
  tally = NEW2(nvectors, short);
  width = NEW2(nvectors, short);

  token_actions();
  free_shifts();
  free_reductions();
  FREE(lookaheads);
  FREE(LA);
  FREE(LAruleno);
  FREE(accessing_symbol);

  goto_actions();
  FREE(goto_map + ntokens);
  FREE(from_state);
  FREE(to_state);

  sort_actions();
  pack_table();
  output_base();
  output_table();
  output_check();
}



/* figure out the actions for the specified state, indexed by lookahead token type.

   The yydefact table is output now.  The detailed info
   is saved for putting into yytable later.  */

token_actions()
{
  register int i;
  register int j;
  register int k;

  actrow = NEW2(ntokens, short);

  k = action_row(0);
  fprintf(ftable, "\nstatic short yydefact[] = {%6d", k);
  save_row(0);

  j = 10;
  for (i = 1; i < nstates; i++)
    {
      putc(',', ftable);

      if (j >= 10)
        {
          putc('\n', ftable);
          j = 1;
        }
      else
        {
          j++;
        }

      k = action_row(i);
      fprintf(ftable, "%6d", k);
      save_row(i);
    }

  fprintf(ftable, "\n};\n");
  FREE(actrow);
}



/* Decide what to do for each type of token if seen as the lookahead token in specified state.
   The value returned is used as the default action (yydefact) for the state.
   In addition, actrow is filled with what to do for each kind of token,
   index by symbol number, with zero meaning do the default action.
   The value MINSHORT, a very negative number, means this situation
   is an error.  The parser recognizes this value specially.

   This is where conflicts are resolved.  The loop over lookahead rules
   considered lower-numbered rules last, and the last rule considered that likes
   a token gets to handle it.  */

int
action_row(state)
int state;
{
  register int i;
  register int j;
  register int k;
  register int m;
  register int n;
  register int count;
  register int default_rule;
  register int nreds;
  register int max;
  register int rule;
  register int shift_state;
  register int symbol;
  register unsigned mask;
  register unsigned *wordp;
  register reductions *redp;
  register shifts *shiftp;
  register errs *errp;
  int nodefault = 0;  /* set nonzero to inhibit having any default reduction */

  for (i = 0; i < ntokens; i++)
    actrow[i] = 0;

  default_rule = 0;
  nreds = 0;
  redp = reduction_table[state];

  if (redp)
    {
      nreds = redp->nreds;

      if (nreds >= 1)
        {
          /* loop over all the rules available here which require lookahead */
          m = lookaheads[state];
          n = lookaheads[state + 1];

          for (i = n - 1; i >= m; i--)
            {
              rule = - LAruleno[i];
              wordp = LA + i * tokensetsize;
              mask = 1;

              /* and find each token which the rule finds acceptable to come next */
              for (j = 0; j < ntokens; j++)
                {
                  /* and record this rule as the rule to use if that token follows.  */
                  if (mask & *wordp)
                    actrow[j] = rule;

                  mask <<= 1;
                  if (mask == 0)
                    {
                      mask = 1;
                      wordp++;
                    }
                }
            }
        }
    }

  shiftp = shift_table[state];

  /* now see which tokens are allowed for shifts in this state.
     For them, record the shift as the thing to do.  So shift is preferred to reduce.  */

  if (shiftp)
    {
      k = shiftp->nshifts;

      for (i = 0; i < k; i++)
        {
          shift_state = shiftp->shifts[i];
          if (! shift_state) continue;

          symbol = accessing_symbol[shift_state];

          if (ISVAR(symbol))
            break;

          actrow[symbol] = shift_state;

          /* do not use any default reduction if there is a shift for error */

          if (symbol == error_token_number) nodefault = 1;
        }
    }

  errp = err_table[state];

  /* See which tokens are an explicit error in this state
     (due to %nonassoc).  For them, record MINSHORT as the action.  */

  if (errp)
    {
      k = errp->nerrs;

      for (i = 0; i < k; i++)
        {
          symbol = errp->errs[i];
          actrow[symbol] = MINSHORT;
        }
    }

  /* now find the most common reduction and make it the default action for this state.  */

  if (nreds >= 1 && ! nodefault)
    {
      if (consistent[state])
        default_rule = redp->rules[0];
      else
        {
          max = 0;
          for (i = m; i < n; i++)
            {
              count = 0;
              rule = - LAruleno[i];
    
              for (j = 0; j < ntokens; j++)
                {
                  if (actrow[j] == rule)
                    count++;
                }
    
              if (count > max)
                {
                  max = count;
                  default_rule = rule;
                }
            }
    
          /* actions which match the default are replaced with zero,
             which means "use the default" */
    
          if (max > 0)
            {
              for (j = 0; j < ntokens; j++)
                {
                  if (actrow[j] == default_rule)
                    actrow[j] = 0;
                }
    
              default_rule = - default_rule;
            }
        }
    }

  /* If have no default rule, the default is an error.
     So replace any action which says "error" with "use default".  */

  if (default_rule == 0)
    for (j = 0; j < ntokens; j++)
      {
        if (actrow[j] == MINSHORT)
          actrow[j] = 0;
      }

  return (default_rule);
}



save_row(state)
int state;
{
  register int i;
  register int count;
  register short *sp;
  register short *sp1;
  register short *sp2;

  count = 0;
  for (i = 0; i < ntokens; i++)
    {
      if (actrow[i] != 0)
        count++;
    }

  if (count == 0)
    return;

  froms[state] = sp1 = sp = NEW2(count, short);
  tos[state] = sp2 = NEW2(count, short);

  for (i = 0; i < ntokens; i++)
    {
      if (actrow[i] != 0)
        {
          *sp1++ = i;
          *sp2++ = actrow[i];
        }
    }

  tally[state] = count;
  width[state] = sp1[-1] - sp[0] + 1;
}



/* figure out what to do after reducing with each rule,
   depending on the saved state from before the beginning
   of parsing the data that matched this rule.

   The yydefgoto table is output now.  The detailed info
   is saved for putting into yytable later.  */

goto_actions()
{
  register int i;
  register int j;
  register int k;

  state_count = NEW2(nstates, short);

  k = default_goto(ntokens);
  fprintf(ftable, "\nstatic short yydefgoto[] = {%6d", k);
  save_column(ntokens, k);

  j = 10;
  for (i = ntokens + 1; i < nsyms; i++)
    {
      putc(',', ftable);

      if (j >= 10)
        {
          putc('\n', ftable);
          j = 1;
        }
      else
        {
          j++;
        }

      k = default_goto(i);
      fprintf(ftable, "%6d", k);
      save_column(i, k);
    }

  fprintf(ftable, "\n};\n");
  FREE(state_count);
}



int
default_goto(symbol)
int symbol;
{
  register int i;
  register int m;
  register int n;
  register int default_state;
  register int max;

  m = goto_map[symbol];
  n = goto_map[symbol + 1];

  if (m == n)
    return (-1);

  for (i = 0; i < nstates; i++)
    state_count[i] = 0;

  for (i = m; i < n; i++)
    state_count[to_state[i]]++;

  max = 0;
  default_state = -1;

  for (i = 0; i < nstates; i++)
    {
      if (state_count[i] > max)
        {
          max = state_count[i];
          default_state = i;
        }
    }

  return (default_state);
}



save_column(symbol, default_state)
int symbol;
int default_state;
{
  register int i;
  register int m;
  register int n;
  register short *sp;
  register short *sp1;
  register short *sp2;
  register int count;
  register int symno;

  m = goto_map[symbol];
  n = goto_map[symbol + 1];

  count = 0;
  for (i = m; i < n; i++)
    {
      if (to_state[i] != default_state)
        count++;
    }

  if (count == 0)
    return;

  symno = symbol - ntokens + nstates;

  froms[symno] = sp1 = sp = NEW2(count, short);
  tos[symno] = sp2 = NEW2(count, short);

  for (i = m; i < n; i++)
    {
      if (to_state[i] != default_state)
        {
          *sp1++ = from_state[i];
          *sp2++ = to_state[i];
        }
    }

  tally[symno] = count;
  width[symno] = sp1[-1] - sp[0] + 1;
}



/* the next few functions decide how to pack 
   the actions and gotos information into yytable. */

sort_actions()
{
  register int i;
  register int j;
  register int k;
  register int t;
  register int w;

  order = NEW2(nvectors, short);
  nentries = 0;

  for (i = 0; i < nvectors; i++)
    {
      if (tally[i] > 0)
        {
          t = tally[i];
          w = width[i];
          j = nentries - 1;

          while (j >= 0 && (width[order[j]] < w))
            j--;

          while (j >= 0 && (width[order[j]] == w) && (tally[order[j]] < t))
            j--;

          for (k = nentries - 1; k > j; k--)
            order[k + 1] = order[k];

          order[j + 1] = i;
          nentries++;
        }
    }
}



pack_table()
{
  register int i;
  register int place;
  register int state;

  base = NEW2(nvectors, short);
  pos = NEW2(nentries, short);
  table = NEW2(MAXTABLE, short);
  check = NEW2(MAXTABLE, short);

  lowzero = 0;
  high = 0;

  for (i = 0; i < nvectors; i++)
    base[i] = MINSHORT;

  for (i = 0; i < MAXTABLE; i++)
    check[i] = -1;

  for (i = 0; i < nentries; i++)
    {
      state = matching_state(i);

      if (state < 0)
        place = pack_vector(i);
      else
        place = base[state];

      pos[i] = place;
      base[order[i]] = place;
    }

  for (i = 0; i < nvectors; i++)
    {
      FREE(froms[i]);
      FREE(tos[i]);
    }

  FREE(froms);
  FREE(tos);
  FREE(pos);
}



int
matching_state(vector)
int vector;
{
  register int i;
  register int j;
  register int k;
  register int t;
  register int w;
  register int match;
  register int prev;

  i = order[vector];
  if (i >= nstates)
    return (-1);

  t = tally[i];
  w = width[i];

  for (prev = vector - 1; prev >= 0; prev--)
    {
      j = order[prev];
      if (width[j] != w || tally[j] != t)
        return (-1);

      match = 1;
      for (k = 0; match && k < t; k++)
        {
          if (tos[j][k] != tos[i][k] || froms[j][k] != froms[i][k])
            match = 0;
        }

      if (match)
        return (j);
    }

  return (-1);
}



int
pack_vector(vector)
int vector;
{
  register int i;
  register int j;
  register int k;
  register int t;
  register int loc;
  register int ok;
  register short *from;
  register short *to;

  i = order[vector];
  t = tally[i];

  if (t == 0)
    berror("pack_vector");

  from = froms[i];
  to = tos[i];

  for (j = lowzero - from[0]; j < MAXTABLE; j++)
    {
      ok = 1;

      for (k = 0; ok && k < t; k++)
        {
          loc = j + from[k];
          if (loc > MAXTABLE)
            fatals("maximum table size (%d) exceeded",MAXTABLE);

          if (table[loc] != 0)
            ok = 0;
        }

      for (k = 0; ok && k < vector; k++)
        {
          if (pos[k] == j)
            ok = 0;
        }

      if (ok)
        {
          for (k = 0; k < t; k++)
            {
              loc = j + from[k];
              table[loc] = to[k];
              check[loc] = from[k];
            }

          while (table[lowzero] != 0)
            lowzero++;

          if (loc > high)
            high = loc;

          return (j);
        }
    }

  berror("pack_vector");
  return 0;     /* JF keep lint happy */
}



/* the following functions output yytable, yycheck
   and the vectors whose elements index the portion starts */

output_base()
{
  register int i;
  register int j;

  fprintf(ftable, "\nstatic short yypact[] = {%6d", base[0]);

  j = 10;
  for (i = 1; i < nstates; i++)
    {
      putc(',', ftable);

      if (j >= 10)
        {
          putc('\n', ftable);
          j = 1;
        }
      else
        {
          j++;
        }

      fprintf(ftable, "%6d", base[i]);
    }

  fprintf(ftable, "\n};\n\nstatic short yypgoto[] = {%6d", base[nstates]);

  j = 10;
  for (i = nstates + 1; i < nvectors; i++)
    {
      putc(',', ftable);

      if (j >= 10)
        {
          putc('\n', ftable);
          j = 1;
        }
      else
        {
          j++;
        }

      fprintf(ftable, "%6d", base[i]);
    }

  fprintf(ftable, "\n};\n");
  FREE(base);
}



output_table()
{
  register int i;
  register int j;

  fprintf(ftable, "\n\n#define\tYYLAST\t\t%d\n\n", high);
  fprintf(ftable, "\nstatic short yytable[] = {%6d", table[0]);

  j = 10;
  for (i = 1; i <= high; i++)
    {
      putc(',', ftable);

      if (j >= 10)
        {
          putc('\n', ftable);
          j = 1;
        }
      else
        {
          j++;
        }

      fprintf(ftable, "%6d", table[i]);
    }

  fprintf(ftable, "\n};\n");
  FREE(table);
}



output_check()
{
  register int i;
  register int j;

  fprintf(ftable, "\nstatic short yycheck[] = {%6d", check[0]);

  j = 10;
  for (i = 1; i <= high; i++)
    {
      putc(',', ftable);

      if (j >= 10)
        {
          putc('\n', ftable);
          j = 1;
        }
      else
        {
          j++;
        }

      fprintf(ftable, "%6d", check[i]);
    }

  fprintf(ftable, "\n};\n");
  FREE(check);
}



/* copy the parser code into the ftable file at the end.  */

output_parser()
{
  register int c;
#ifdef DONTDEF
  FILE *fpars;
#else
#define fpars fparser
#endif

  if (pure_parser)
    fprintf(ftable, "#define YYIMPURE 1\n\n");
  else
    fprintf(ftable, "#define YYPURE 1\n\n");

#ifdef DONTDEF  /* JF no longer needed 'cuz open_extra_files changes the
                   currently open parser from bison.simple to bison.hairy */
  if (semantic_parser)
    fpars = fparser;
  else fpars = fparser1;
#endif

  c = getc(fpars);
  while (c != EOF)
    {
      if (c == '$') {
#ifdef DONTDEF
        fprintf(ftable, "#include \"%s\"\n", actfile);
#else
        /* JF don't #include the action file.  Stuff it right in. */
        rewind(faction);
        for(c=getc(faction);c!=EOF;c=getc(faction))
                putc(c,ftable);
#endif
      } else
        putc(c, ftable);
      c = getc(fpars);
    }
}



output_program()
{
  register int c;
  extern int lineno;

  fprintf(ftable, "#line %d \"%s\"\n", lineno, infile);

  c = getc(finput);
  while (c != EOF)
    {
      putc(c, ftable);
      c = getc(finput);
    }
}



free_itemsets()
{
  register core *cp,*cptmp;

  FREE(state_table);

  for (cp = first_state; cp; cp = cptmp) {
    cptmp=cp->next;
    FREE(cp);
  }
}



free_shifts()
{
  register shifts *sp,*sptmp;/* JF derefrenced freed ptr */

  FREE(shift_table);

  for (sp = first_shift; sp; sp = sptmp) {
    sptmp=sp->next;
    FREE(sp);
  }
}



free_reductions()
{
  register reductions *rp,*rptmp;/* JF fixed freed ptr */

  FREE(reduction_table);

  for (rp = first_reduction; rp; rp = rptmp) {
    rptmp=rp->next;
    FREE(rp);
  }
}

/* E O F */
SHAR_EOF
cat << \SHAR_EOF > print.c
/* Print information on generated parser, for bison,
   Copyright (C) 1984, 1986 Bob Corbett and Free Software Foundation, Inc.

BISON is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY.  No author or distributor accepts responsibility to anyone
for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing.
Refer to the BISON General Public License for full details.

Everyone is granted permission to copy, modify and redistribute BISON,
but only under the conditions described in the BISON General Public
License.  A copy of this license is supposed to have been given to you
along with BISON so you can know your rights and responsibilities.  It
should be in a file named COPYING.  Among other things, the copyright
notice and this notice must be preserved on all copies.

 In other words, you are welcome to use, share and improve this program.
 You are forbidden to forbid anyone else to use, share and improve
 what you give them.   Help stamp out software-hoarding!  */

#include <stdio.h>
#include "machine.h"
#include "new.h"
#include "files.h"
#include "gram.h"
#include "state.h"


extern char **tags;
extern int nstates;
extern short *accessing_symbol;
extern core **state_table;
extern shifts **shift_table;
extern errs **err_table;
extern reductions **reduction_table;
extern char *consistent;
extern char any_conflicts;
extern char *conflicts;



terse()
{
  if (any_conflicts)
    {
      conflict_log();
    }
}



verbose()
{
  register int i;

  if (any_conflicts)
    verbose_conflict_log();

  fprintf(foutput, "\n\ntoken types:\n");
  print_token (-1, 0);
  if (translations)
    {
      for (i = 0; i <= max_user_token_number; i++)
        /* Don't mention all the meaningless ones.  */
        if (token_translations[i] != 2)
          print_token (i, token_translations[i]);
    }
  else
    for (i = 1; i < ntokens; i++)
      print_token (i, i);

  for (i = 0; i < nstates; i++)
    {
      print_state(i);
    }
}



print_token(extnum, token)
int extnum, token;
{
  fprintf(foutput, " type %d is %s\n", extnum, tags[token]);
}



print_state(state)
int state;
{
  fprintf(foutput, "\n\nstate %d\n\n", state);
  print_core(state);
  print_actions(state);
}



print_core(state)
int state;
{
  register int i;
  register int k;
  register int rule;
  register core *statep;
  register short *sp;
  register short *sp1;

  statep = state_table[state];
  k = statep->nitems;

  if (k == 0) return;

  for (i = 0; i < k; i++)
    {
      sp1 = sp = ritem + statep->items[i];

      while (*sp > 0)
        sp++;

      rule = -(*sp);
      fprintf(foutput, "    %s  ->  ", tags[rlhs[rule]]);

      for (sp = ritem + rrhs[rule]; sp < sp1; sp++)
        {
          fprintf(foutput, "%s ", tags[*sp]);
        }

      putc('.', foutput);

      while (*sp > 0)
        {
          fprintf(foutput, " %s", tags[*sp]);
          sp++;
        }

      fprintf (foutput, "   (%d)", rule);
      putc('\n', foutput);
    }

  putc('\n', foutput);
}



print_actions(state)
int state;
{
  register int i;
  register int k;
  register int state1;
  register int symbol;
  register shifts *shiftp;
  register errs *errp;
  register reductions *redp;
  register int rule;

  shiftp = shift_table[state];
  redp = reduction_table[state];
  errp = err_table[state];

  if (!shiftp && !redp)
    {
      fprintf(foutput, "    NO ACTIONS\n");
      return;
    }

  if (shiftp)
    {
      k = shiftp->nshifts;

      for (i = 0; i < k; i++)
        {
          if (! shiftp->shifts[i]) continue;
          state1 = shiftp->shifts[i];
          symbol = accessing_symbol[state1];
/*        if (ISVAR(symbol)) break;  */
          fprintf(foutput, "    %-4s\tshift  %d\n", tags[symbol], state1);
        }

      if (i > 0)
        putc('\n', foutput);
    }
  else
    {
      i = 0;
      k = 0;
    }

  if (errp)
    {
      k = errp->nerrs;

      for (i = 0; i < k; i++)
        {
          if (! errp->errs[i]) continue;
          symbol = errp->errs[i];
          fprintf(foutput, "    %-4s\terror (nonassociative)\n", tags[symbol]);
        }

      if (i > 0)
        putc('\n', foutput);
    }
  else
    {
      i = 0;
      k = 0;
    }

  if (consistent[state] && redp)
    {
      rule = redp->rules[0];
      symbol = rlhs[rule];
      fprintf(foutput, "    $default\treduce  %d  (%s)\n\n",
                rule, tags[symbol]);
    }
  else if (redp)
    {
      print_reductions(state);
    }

  if (i < k)
    {
      for (; i < k; i++)
        {
          if (! shiftp->shifts[i]) continue;
          state1 = shiftp->shifts[i];
          symbol = accessing_symbol[state1];
          fprintf(foutput, "    %-4s\tgoto  %d\n", tags[symbol], state1);
        }

      putc('\n', foutput);
    }
}
SHAR_EOF
#	End of shell archive
exit 0
-- 
Jim Omura, 2A King George's Drive, Toronto, (416) 652-3880
ihnp4!utzoo!lsuc!jimomura
Byte Information eXchange: jimomura