[mod.ai] "Proper" Study of Science, Conservation of Info

larry@JPL-VLSI.ARPA.UUCP (07/24/86)

I have to start with materialism.  What we mean today when we say the word 
may have a common core with its use in previous centuries, but the details 
are vastly different.  Today we recognize not only wind and wave, steam and 
steel as physical realities, but also quanta and field effects (and virtual 
particles!)--subjects that pre-modern physicists and engineers would 
consider downright mystical.  And that would have been exactly true--in 
their time.  But we  can precisely define these things now, quantify them, 
experiment with and measure them.  An even more radical difference is that 
information--pattern, form--is now a part of physics, "a metric as important 
as time, space, charge, etc."

The ability to quantify and measure pattern and shape has profound implica-
tions for the study of formerly mystical topics such as intelligence.   It 
means we can develop conservation laws for information, without which you 
can't construct an essential ingredient of mathematics, equations.  I'm not 
implying I know what they are in any detail; people with other qualifica-
tions than mine must provide that.  But the shape of the research seems to 
be clear; cybernetics and information theory provide the basis.

For instance, there are several links between information and energy.  
Higher frequency radiation has more bits per unit time.  Mutation is the 
result of external energy pushing genes beyond the ability of their binding 
energies to maintain a stable structure.  The impressing of information on 
media (diskettes, molecules, brains) requires energy which can be measured. 
Organization of information in structures (indexed or random files, 
percepts, concepts) has time/energy trade-offs for different kinds of 
accesses.

In a way, the information content of an entity is more important than its 
material content.  A decade from now it's likely that none of our bodies 
will contain EVEN A SINGLE ATOM now in them.  Even bones are fluid in 
biological organisms; only when we die does matter cease to flow into and 
out of us.  We are NOT matter, or even energy, in the Antique sense.  We are 
patterns, standing waves in four (or more) dimensions.

Maintaining these patterns within safe parameters, or learning new safe 
parameters, requires that our very molecules input data, store it, process 
it--often in a recursive or self-referential or time-dependent fashion--and 
act.  (RNA  is an excellent model for an advanced computer, for instance.)  
And we can be thought as a  number of layers each with its unique informa-
tion needs: cells, tissue, organs, organisms, tribes.

One feature common to all intelligences, however rudimentary, is the ability 
to create and manipulate analogs of the environment and of themselves.  
Simulations are much cheaper and safer than experiments.  This also gives a 
clue as to how will impresses itself on the universe despite its immaterial 
nature--because it isn't truly immaterial.  Patterns are no more independent 
of their matter/energy base than matter can exist without pattern.  (That 
is, the pattern of binding is what makes the difference between an atom and 
a burst of radiant energy.)  Because intelligence is a pattern of energy it 
can affect matter and through triggering have effects enormously greater 
than the triggering stimulus.  A whim and a whistle can destroy a city--with 
an avalanche.

The point of all this is that life and intelligence are no longer 
supernatural--beyond the reach of formalism and experiment.

What is still a mystery to me is consciousness, but the understanding 
doesn't seem beyond practical realization.  It seems reasonable that con-
sciousness arises as a result of time-binding, recursion, and self-
reference.  Perhaps multiple layers of vulnerability and adaptability are 
important, too.  (Our current robots and computers don't have any of these 
and are thus poor candidates for models of intelligent mechanisms, much less 
conscious ones.  Thus I'd agree with one recent critic of some AI research.)

I can't agree that consciousness is an improper subject for scientific 
study.  Our inability to observe it directly (in a public as opposed to 
subjective way) is shared by many other scientific fields.  In fact the most 
crucial subjects in the "hard" sciences must be studied indirectly: radia-
tion, atoms, viruses, etc.  The difficulty of defining terms shouldn't be a 
deterrent either.  All developing research shares the same problem as the 
underlying ideas change and solidify.

Some people object on emotional grounds.  Many of them only succeed in 
revealing their own limitations, not those of the rest of us.  They are too 
emotionally stunted to have the strength of humility; they must somehow be 
above nature, superior.  And too intellectually crippled to see the magic 
and mystery in star-shine and bird flight, in ogive curve and infinitesimals 
and the delicious simplicity of an algorithm.
                                                   Larry @ jpl-vlsi.arpa

jc@cdx39.UUCP (08/20/86)

  [The following hasn't any obvious AI, but it's interesting enough
  to pass along.  Commonsense reasoning at work.  -- KIL]


> The ability to quantify and measure ... has profound implications ...
> 
>               ...  A decade from now it's likely that none of our bodies 
> will contain EVEN A SINGLE ATOM now in them.  Even bones are fluid in 
> biological organisms; ...

OK, let's do some BOTE (Back Of The Envelope) calculations.  
According to several bio and med texts I've read over the 
years, a good estimate of the half-life residency of an atom 
in the soft portions of a mammal's body is 1/2 year; in the 
bones it is around 2 years.  The qualifications are quite
obvious and irrelevant here; we are going for order-of-magnitude 
figures.

For those not familiar with the term, "half-life residency"
means the time to replace half the original atoms.  This
doesn't mean that you replace half your soft tissues in
6 months, and the other half in the next six months.  What
happens is exponential:  in one year, 1/4 of the original
are left; in 18 months, 1/8 are left, and so on.

Ten years is about 5 half-lives for the bones, and 20 for the 
soft tissues.  A human body masses about 50 Kg, give or take 
a factor of 2.  The soft tissues are primarily water (75%) 
and COH2; we can treat it all as water for estimating the
number of atoms.  This is about (50Kg) * (1000 KG/g) / (16 
g/mole) = 3000 moles, times 6*10^23 gives us about 2*10^26 
atoms.  The bones are a bit denser (with fewer atoms per
gram); the rest is a bit less dense (with more atoms per
gram), but it's about right.  For order-of-magnitude estimates,
we would have roughly 10^26 atoms in each kind of tissue.

In 5 half-lives, we would divide this by 2^5 = 32 to get the 
number of original atoms, giving us about 7*10^25 atoms of the 
bones left.  For the soft tissues, we divide by 2^20 = 4*10^6, 
giving us about 2 or 3 * 10^20 of the original atoms.  

Of course, although these are big numbers, they don't amount to 
much mass, especially for the soft tissues.  But they are a lot 
more than a single atom, even if they are off by an order of
magnitude..

Does anyone see any serious errors in these calculations?  Remember
that these are order-of magnitude estimates; quibbling with anything
other than the first significant digit and the exponent is beside
the point.  The only likely source of error is in the half-life
estimate, but the replacement would have to be much faster than a
half-year to stand a chance of eliminating every atom in a year.

In fact, with the exponential-decay at work here, it is easy 
to see that it would take about 80 half-lives (2*10^26 = 2^79) 
to replace the last atom with better than 50% probability.  
For 10 years, this would mean a half-life residency of about 
6 weeks, which may be true for a mouse or a sparrow, but I've 
never seen any hint that human bodies might replace themselves 
nearly this fast.  

In fact, we can get a good upper bound on how fast our atoms 
could be replaced, as well as a good cross-check on the above
rough calculations, by considering how much we eat.  A normal 
human diet is roughly a single Kg of food a day.  (The air 
breathed isn't relevant; very little of the oxygen ends up 
incorporated into tissues.) In 6 weeks, this would add up to 
about 50 Kg.  So it would require using very nearly all the 
atoms in our food as replacement atoms to do the job required.  
This is clearly not feasible; it is almost exactly the upper 
bound, and the actual figure has to be lower.  A factor of 4 
lower would give us the above estimate for the soft tissues, 
which seems feasible.

There's one more qualification, but it works in the other
direction.  The above calculations are based on the assumption
that incoming atoms are all 'new'.  For people in most urban
settings, this is close enough to be treated as true.  But
consider someone whose sewage goes into a septic tank and
whose garbage goes into a compost pile, and whose diet is
based on produce of their garden, hen-house, etc.  The diet
of such people will contain many atoms that have been part
of their bodies in previous cycles, especially the C and N 
atoms, but also many of the O and H atoms.  Such people could
retain a significantly larger fraction of original atoms 
after a decade.

Please don't take this as a personal attack.  I just couldn't
resist the combination of the quoted lines, which seemed to 
be a clear invitation to do some numeric calculations.  In
fact, if someone has figures good to more places, I'd like
to see them.