[net.puzzle] An Old One; similar, I think

mcmillan@eosp1.UUCP (John McMillan) (02/13/84)

What's the next term of this series?

10,11,12,13,14,15,16,17,20,22,24,31,100,121,...

Anyone who can think of a good way to write the next TWO terms is welcome
to start a public discussion.
					- Toby Robison
					allegra!eosp1!robison
					decvax!ittvax!eosp1!robison
					princeton!eosp1!robison
					(NOTE! NOT McMillan; Robison.)

ags@pucc-i (Seaman) (02/14/84)

>  What's the next term of this series?
>  
>  10,11,12,13,14,15,16,17,20,22,24,31,100,121,...
>  
>  Anyone who can think of a good way to write the next TWO terms is welcome
>  to start a public discussion.

How about 10000,1111111111111111 ?

That last term doesn't quite work like the others but it is the best I
can do.

-- 

Dave Seaman
..!pur-ee!pucc-i:ags

"Against people who give vent to their loquacity 
by extraneous bombastic circumlocution."

ron@uokvax.UUCP (02/17/84)

#R:eosp1:-58300:uokvax:13500007:000:402
uokvax!ron    Feb 15 15:00:00 1984


i once saw a 'find the next number in this series' type thing, and
BOY was it nasty.  the numbers went something like:

	49, 65, 72, 88

anyway, it turned out if you drove down a certain highway (near the
author's place of business) these were streets you could exit on -
49th, 65th, 72nd, 88th...  anyone else have another cute series like this??


	ron

...!ctvax!uokvax!ron
...!duke!uok!uokvax!ron

faiman@uiuccsb.UUCP (04/12/84)

#R:uokvax:-1350000700:uiuccsb:21500001:000:131
uiuccsb!faiman    Apr 12 09:26:00 1984

uokvax!ron wants a 'cute series'.  OK.  What are the next two in the
series:
		640, 231, 100, ...  ?

Mike Faiman - uiucdcs!faiman