Laws@SRI-AI.ARPA@sri-unix.UUCP (08/09/83)
From: Ken Laws <Laws@SRI-AI.ARPA> Anderson, J.R. Farrell, R. Sauers, R.* Learning to plan in LISP.* Carnegie Mellon U. Psych.Dept.*1982. Barber, G.*Supporting organizational problem solving with a workstation.* M.I.T. A.I. Lab.*Memo 681.*1982. Bundy, A. Silver, B.*A critical survey of rule learning programs.* Edinburgh U. A.I. Dept.*Res. Paper 169.*1982. Carbonell, J.G.* Learning by analogy: formulating and generalizing plans from past experience.* Carnegie Mellon U. Comp.Sci.Dept.*CMU-CS-82-126.*1982. Carroll, J.M. Mack, R.L.* Metaphor, computing systems, and active learning.* IBM Watson Res. Center.*RC 9636.*1982. schemes.* IBM Watson Res. Center.*RJ 3645.*1982. Cohen, P.R.* Planning and problem solving.* Stanford U. Comp.Sci.Dept.*STAN-CS-82-939; Stanford U. Comp.Sci.Dept. Heuristic Programming Project.*HPP-82-021.*1982. 61p. Dellarosa, D. Bourne, L.E. Jr.*Text-based decisions: changes in the availability of facts due to instructions and the passage of time.* Colorado U. Cognitive Sci.Inst.* Tech.rpt. 115-ONR.*1982. Ehrlich, K. Soloway, E.*An empirical investigation of the tacit plan knowledge in programming.* Yale U. Comp.Sci.Dept.*Res.Rpt. 236.*1982. Findler, N.V. Cromp, R.F.*An artificial intelligence technique to generate self-optimizing experimental designs.* Arizona State U. Comp.Sci.Dept.*TR-83-001.* 1983. Good, D.I.* Reusable problem domain theories.* Texas U. Computing Sci.Inst.*TR-031.*1982. Good, D.I.* Reusable problem domain theories.* Texas U. Computing Sci.Inst.*TR-031.*1982. Kautz, H.A.*A first-order dynamic logic for planning.* Toronto U. Comp. Systems Res. Group.*CSRG-144.*1982. Luger, G.F.*Some artificial intelligence techniques for describing problem solving behaviour.* Edinburgh U. A.I. Dept.*Occasional Paper 007.*1977. Mitchell, T.M. Utgoff, P.E. Banerji, R.* Learning by experimentation: acquiring and modifying problem solving heuristics.* Rutgers U. Comp.Sci.Res.Lab.*LCSR-TR-31.* 1982. Moura, C.M.O. Casanova, M.A.* Design by example (preliminary report).* Pontificia U., Rio de Janeiro. Info.Dept.*No. 05/82.*1982. Nadas, A.*A decision theoretic formulation of a training problem in speech recognition and a comparison of training by uncondition versus conditional maximum likelihood.* IBM Watson Res. Center.*RC 9617.*1982. Slotnick, D.L.* Time constrained computation.* Illinois U. Comp.Sci.Dept.*UIUCDCS-R-82-1090.*1982. Tomita, M.* Learning of construction of finite automata from examples using hill climbing. RR: regular set recognizer.* Carnegie Mellon U. Comp.Sci.Dept.* CMU-CS-82-127.*1982. Utgoff, P.E.*Acquisition of appropriate bias for inductive concept learning.* Rutgers U. Comp.Sci.Res.Lab.* LCSR-TM-02.*1982. Winston, P.H. Binford, T.O. Katz, B. Lowry, M.* Learning physical descriptions from functional definitions, examples, and precedents.* M.I.T. A.I. Lab.*Memo 679.* 1982. Winston, P.H.* Learning by augmenting rules and accumulating censors.* M.I.T. A.I. Lab.*Memo 678.*1982.