padpowell@wateng.UUCP (PAD Powell) (08/31/84)
Here is the new man page, and some lint library additions that should be made. : Run this shell script with "sh" not "csh" PATH=:/bin:/usr/bin:/usr/ucb export PATH all=FALSE if [ $1x = -ax ]; then all=TRUE fi /bin/echo 'Extracting llib-lc.additions' sed 's/^X//' <<'//go.sysin dd *' >llib-lc.additions /* VARARGS */ char * sprintf( s, f ) char *s, *f; { return(s);} /* VARARGS */ char * snprintf( c, s, f ) char *s, *f; { return(s);} /* VARARGS */ char * sxprintf( c, s, f ) char *s, *f; { return(s);} //go.sysin dd * made=TRUE if [ $made = TRUE ]; then /bin/chmod 644 llib-lc.additions /bin/echo -n ' '; /bin/ls -ld llib-lc.additions fi /bin/echo 'Extracting printf.3s' sed 's/^X//' <<'//go.sysin dd *' >printf.3s X.TH PRINTF 3S "20 August 1984" X.SH NAME printf, fprintf, sprintf, snprintf, sxprintf \- formatted output conversion X.SH SYNOPSIS X.B #include <stdio.h> X.PP X.B printf(format X.RB [ , arg ] ... X.B ) X.br X.B char *format; X.PP X.B fprintf(stream, format X.RB [ , arg ] ... X.B ) X.br X.SM X.B FILE X.B *stream; X.br X.B char *format; X.PP X.B char *sprintf(s, format X.RB [ , arg ] ... X.B ) X.br X.B char *s, format; X.PP X.B char *snprintf(count, s, format X.RB [ , arg ] ... X.B ) X.br X.B int count; X.B char *s, format; X.PP X.B char *sxprintf(count, s, format X.RB [ , arg ] ... X.B ) X.br X.B int count; X.B char *s, format; X.PP X.B _doprnt(format, args, stream) X.br X.B char *format; X.br X.B void *args; X.br X.B FILE *stream; X.SH DESCRIPTION X.I Printf places output on the standard output stream X.BR stdout . X.I Fprintf places output on the named output X.IR stream . X.I Sprintf places `output' in the string X.IR s , followed by the character `\\0'. X.I Snprintf places at most X.I count characters of `output' followed by the character `\\0' in the string X.IR s . The character count includes the trailing `\\0'. X.I Sxprintf is identical to X.IR snprintf , but does not add a trailing `\\0'. If any of X.I sprintf, snprintf, sxprintf fails, it will return NULL, otherwise it returns the value of All of these routines work by calling the internal routine X.B _doprnt, which has a machine specific implementation. X.IR s . X.PP Each of these functions converts, formats, and prints its arguments under control of the format argument. The format argument is a character string which contains two types of objects: plain characters, which are simply copied to the output stream, and conversion specifications, each of which causes conversion and printing of the next successive X.IR arg . X.PP Each conversion specification is introduced by the character X.BR % . Following the X.BR % , there may be X.TP X.B \(bu an optional minus sign `\-' which specifies X.I "left adjustment" of the converted value in the indicated field; X.TP X.B \(bu an optional digit string specifying a X.I "field width;" if the converted value has fewer characters than the field width it will be blank-padded on the left (or right, if the left-adjustment indicator has been given) to make up the field width; if the field width begins with a zero, zero-padding will be done instead of blank-padding; X.TP X.B \(bu an optional period X.RB ` . ' which serves to separate the field width from the next digit string; X.TP X.B \(bu an optional digit string specifying a X.I precision which specifies the number of digits to appear after the decimal point, for e- and f-conversion, or the maximum number of characters to be printed from a string; X.TP X.B \(bu an optional `#' character specifying that the value should be converted to an ``alternate form''. For X.BR c , X.BR d , X.BR s , and X.BR u , conversions, this option has no effect. For X.B o conversions, the precision of the number is increased to force the first character of the output string to a zero. For X.BR x ( X ) conversion, a non-zero result has the string X.BR 0x ( 0X ) prepended to it. For X.BR e , X.BR E , X.BR f , X.BR g , and X.BR G , conversions, the result will always contain a decimal point, even if no digits follow the point (normally, a decimal point only appears in the results of those conversions if a digit follows the decimal point). For X.B g and X.B G conversions, trailing zeros are not removed from the result as they would otherwise be. X.TP X.B \(bu the character X.B l specifying that a following X.BR d , X.BR o , X.BR x , or X.B u corresponds to a long integer X.IR arg . X.TP X.B \(bu a character which indicates the type of conversion to be applied. X.PP A field width or precision may be `*' instead of a digit string. In this case an integer X.I arg supplies the field width or precision. X.PP The conversion characters and their meanings are X.TP X.B dox The integer X.I arg is converted to decimal, octal, or hexadecimal notation respectively. X.TP X.B f The float or double X.I arg is converted to decimal notation in the style `[\fB\-\fR]ddd.ddd' where the number of d's after the decimal point is equal to the precision specification for the argument. If the precision is missing, 6 digits are given; if the precision is explicitly 0, no digits and no decimal point are printed. X.TP X.B e The float or double X.I arg is converted in the style `[\fB\-\fR]d\fB.\fRddd\fBe\fR\(+-dd' where there is one digit before the decimal point and the number after is equal to the precision specification for the argument; when the precision is missing, 6 digits are produced. X.TP X.B g The float or double X.I arg is printed in style X.BR d , in style X.BR f , or in style X.BR e , whichever gives full precision in minimum space. X.TP X.B c The character X.I arg is printed. X.TP X.B s X.I Arg is taken to be a string (character pointer) and characters from the string are printed until a null character or until the number of characters indicated by the precision specification is reached; however if the precision is 0 or missing all characters up to a null are printed. X.TP X.B u The unsigned integer X.I arg is converted to decimal and printed (the result will be in the range 0 through MAXUINT, where MAXUINT equals 4294967295 on a VAX-11 and 65535 on a PDP-11). X.TP X.B % Print a `%'; no argument is converted. X.PP In no case does a non-existent or small field width cause truncation of a field; padding takes place only if the specified field width exceeds the actual width. Characters generated by X.I printf are printed by X.IR putc (3S). X.PP X.B Examples X.br To print a date and time in the form `Sunday, July 3, 10:02', where X.I weekday and X.I month are pointers to null-terminated strings: X.RS X.HP X.nh printf("%s, %s %d, %02d:%02d", weekday, month, day, hour, min); X.RE X.hy X.PP To print X.if n pi X.if t \(*p to 5 decimals: X.IP printf("pi = %.5f", 4*atan(1.0)); X.SH "SEE ALSO" putc(3S), scanf(3S), ecvt(3) X.SH BUGS Very wide fields (>128 characters) fail. Very wide fields will be truncated. Sprintf assumes a very long destination string is available. This enables the user to tromp over dynamically allocated memory with little effort. The X.I snprintf and X.I sxprintf functions have been provided in an effort to reduce strain on programmers. //go.sysin dd * made=TRUE if [ $made = TRUE ]; then /bin/chmod 644 printf.3s /bin/echo -n ' '; /bin/ls -ld printf.3s fi