outer@utcsrgv.UUCP (Richard Outerbridge) (10/20/84)
This is a sh'archive which contains a public-domain implementation of the ANSI Data Encryption Algorithm (which in hardware is the DES). I wrote the kludgy user-interface, and the encryption was authored by Jim Gillogly with help from Lauren Weinstein. Cut on the line and feed through 'sh', NOT 'csh' (ends: "ls -l desguts.c"). Enjoy! Richard Outerbridge <outer@utcsrgv.UUCP> 416 961-4757 Payload Deliveries: N 41 39'36", W 79 23'42", Elev. 106.47m. ======================= cut up to here ========================= #!/bin/sh cat >README <<'--- (30) ---' The two files <desmods.c> and <desguts.c> constitute a public-domain implementation of the ANSI Data Encryption Algorithm or DEA. The DEA is functionally the same as the National Bureau of Standards Data Encryption Standard (DES), which is perforce a hardware implementation. Albeit a "DEA" implementation, <desguts.c> will successfully complete the NBS "DES" validation suite. <desmods.c> is a "filter" which uses the DEA to implement three of the NBS suggested DES "modes of operation": Electronic Code Book (ECB); Cipher Block Chaining (CBC), and CBC authentication or ChecKSumming (CKS). In the interests of portability the following weaknesses are present: 1) Keys are command-line arguments [there should be provision for entering them invisibly, and directly, from the terminal]. 2) Incomplete final blocks are NULL-padded, rather than being filled with spurious indeterminate garbage. In the case of a complete final block, an incomplete block [i.e. the one-character "block" '0'] is issued. Keys are given as ASCII strings of any desired length which are "crunched" by CBC'ing them down to the requisite eight-byte length. For further usage information, see the description at the start of <desmods.c>. Compile the programs with: cc -o des -s -O desmods.c desguts.c Check the programs with: des cks # < /dev/null Which should result in: : 8 bytes : c9574425 6a5ed31d : Direct problems, questions and comments to: ..!utcsrgv!outer or ..!decvax!randvax!jim (uucp rel v1.0 8410.19 outer) --- (30) --- ls -l README cat >desmods.c <<'--- (30) ---' /***************************** desmod ************************* * DESMODS: encrypt/decrypt bytes using the NBS DES algorithm. * Programmed by R.W.Outerbridge; uses Jim Gillogly's DES. * * Usage: des (+|-)([ecb]|<cbc|cks>) key1 <ivec> * EN/DE MODES KEYS * * + : ENcrypt (default if MODE specified) * - : DEcrypt (presumes encrypted input) * * Modes of Operation (choose ONE): * * ecb : (default) Electronic Code Book. Only uses one key. * If simply "+" or "-" is specified, ecb is used. * cbc : Cipher Block Chaining. Uses two keys. * cks : ChecKSum. Generates a 64-bit checksum using two keys. * * Both keys may be as long as you wish. The practical limit * on keylength is the size of your system's argument buffer. * WARNING: on some machines all arguments become CAPITALS. * WARNING: non-ascii machines MAY get different results. * * Any character may be used in keys - depending on the O/S - * except ASCII NULL (0x00). The one letter key '#', when used * for "key1", will cause desmods to use a preset default key * (for verification and testing). Failing to specify "ivec", if * required, will result in "key1" being used for both keys. It * is an error to omit "key1". There is no provision for giving * arbitrary, absolute, bit-valued keys. * * As painful as they are to use, long keys are MUCH safer; * think up nonsense phrases you can safely remember. * */ #include <stdio.h> #define toascii(a) ((a)&0177) #define EN 0 #define DE 1 #define CKS 2 #define MODS 3 typedef char BYTE; /* >MUST< be char! */ /* cryptographic declarations */ void copy8(), xor8(), getkey(); BYTE Block[8], Link[8], Temp[8], IV[8]; BYTE DFLTKY[8] = { 1,35,69,103,137,171,205,239 }; /* DO NOT ALTER! => 0x0123456789abcdef <= */ extern void desinit(), kinit(); extern int endes(), dedes(); int (*des)(); /* I/O declarations */ void ruderr(), put8(), vraiput(), initio(); int IOedf, End, Once; BYTE Last[8]; int Ecb(), Cbc(), Cks(); struct modes { char *name; int (*func)(); }; struct modes ModsOp[MODS] = { /* Must be CAPs for CP/M */ { "ecb", Ecb }, { "cbc", Cbc }, { "cks", Cks } }; main(argc, argv) int argc; char **argv; { int (*xeqtr)(); int step, ende, edio, ok, i; BYTE kv[8]; argv++; argc--; if(argc > 3 || argc < 2) ruderr(); else desinit(); for(step=0; argc > 0; step++) { switch(step) { case 0: /* set en/de and/or default mode */ if(*argv[0] == '+' || *argv[0] == '-') { ende = (*argv[0] == '+') ? EN : DE; *argv[0]++ = NULL; if(*argv[0] == NULL) { xeqtr = Ecb; /* default mode */ edio = ende; argv++; argc--; break; } } else ende = EN; for(i=ok=0; i < MODS && !ok; i++) { if(strcmp(argv[0], ModsOp[i].name) == 0) { xeqtr = ModsOp[i].func; ok = 1; } } if(!ok) { fprintf(stderr, "Des: unknown mode >%s<.\n", argv[0]); ruderr(); } while(*argv[0]) *argv[0]++ = NULL; argv++; argc--; /* set appropriate IO modes */ if(xeqtr == Cks) edio = CKS; else edio = ende; /* falling through.... */ case 1: /* get the key and IV, if needed and present */ if(strcmp(argv[0], "#") == 0) copy8(DFLTKY, kv); else getkey(argv[0], kv); argv++; argc--; /* if nothing left, but an IV needed, use the key */ if(argc == 0) { if(xeqtr != Ecb) copy8(kv, IV); break; } else if(xeqtr == Ecb) { fprintf(stderr, "Des: ivec ignored.\n"); while(*argv[0]) *argv[0]++ = NULL; argv++; argc--; break; } else getkey(argv[0], IV); argv++; argc--; break; default: fprintf(stderr, "Des: Programming error!\n"); exit(1); break; } /* switch */ } /* argument parsing */ kinit(kv); if(ende == DE) des = dedes; else des = endes; initio(edio); (*xeqtr)(ende); /* ta-da! Take it away xeqtr! */ exit(0); } /* end of main */ void ruderr() { fprintf(stderr, "Usage: des (+|-)([ecb]|<cbc|cks>) key1 <ivec>\n"); exit(1); } Cbc(e_d) /* Cipher Block Chaining */ int e_d; /* Ciphertext errors are self-healing. */ { copy8(IV, Link); while(get8(Block) != EOF) { if(e_d == DE) { (*des)(Block, Temp); xor8(Temp, Link); copy8(Block, Link); put8(Temp); } else { xor8(Block, Link); (*des)(Block, Link); put8(Link); } } return; } Cks(dummy) /* CBC authentication checksum generator */ int dummy; /* The banks use this for verifications. */ { int i, j, k; long count = 0; copy8(IV, Link); while(get8(Block) != EOF) { xor8(Block, Link); (*des)(Block, Link); count++; } fprintf(stdout, ": %0ld bytes\t: ", count<<3); for(i=j=0; i < 2; i++) { for(k=0; k < 4; k++, j++) fprintf(stdout, "%02x", Link[j]&0377); putc(' ', stdout); } fprintf(stdout, ":\n"); return; } Ecb(dummy) /* Electronic Code Book : simple substitution */ int dummy; /* Yawn. For static data and random access. */ { while(get8(Block) != EOF) { (*des)(Block, Block); put8(Block); } return; } void copy8(from, to) register BYTE *from, *to; { register BYTE *ep; ep = &to[8]; while(to < ep) *to++ = *from++; return; } void xor8(to, with) register BYTE *to, *with; { register BYTE *ep; ep = &to[8]; while(to < ep) *to++ ^= *with++; return; } void put8(block) register BYTE *block; { if(IOedf == DE) copy8(block, Last); else vraiput(block, &block[8]); return; } get8(input) /* KLUDGE: incomplete blocks handled sleazily */ register BYTE *input; { register int i, j; if(End == 1) return(EOF); /* no more input */ for(i=0; i < 8 && ((j = getc(stdin)) != EOF); i++) *input++ = j; if(IOedf == DE) { /* DECRYPTION */ /* complete block? pending output? */ if(i == 8 && (Once > 0)) vraiput(Last, &Last[8]); else if(j == EOF) { End = 1; if(Once > 0) { /* incomplete block means no nulls */ if(i != 0) i = 0; else { i = Last[7]&017; if(i > 8) i = 0; /* huh? */ } vraiput(Last, &Last[8-i]); } return(EOF); } } else if(j == EOF) { /* ENCRYPTION */ End = 1; if(i == 0 && (IOedf == EN || (Once > 0))) { /* if no padding to do, print a kludge */ if(IOedf == EN && (Once > 0)) putc('0', stdout); return(EOF); } for(j=i; j < 7; j++) *input++ = NULL; *input = 8-i; } Once = 1; return(0); } void vraiput(cp, ep) register BYTE *cp, *ep; { while(cp < ep) putc((char)*cp++, stdout); return; } void initio(edf) /* use this as a hook on systems without UNIX */ int edf; { IOedf = edf; End = Once = 0; return; } void getkey(aptr, kptr) register char *aptr; register BYTE *kptr; { register BYTE *store; register int i, first; BYTE hold[8]; store = kptr; first = 1; kinit(DFLTKY); copy8(DFLTKY, hold); while(*aptr || first) { kptr = store; for(i=0; i<8 && (*aptr != NULL); i++) { *kptr++ = toascii(*aptr); *aptr++ = NULL; } while(i++ < 8) *kptr++ = NULL; xor8(store, hold); endes(store, hold); first = 0; } copy8(hold, store); return; } /* des cks # < /dev/null * : 8 bytes : c9574425 6a5ed31d : * (rwo/8409.30.00:07/V1.0) */ /************************* desmods *******************************/ --- (30) --- ls -l desmods.c cat >desguts.c <<'--- (30) ---' /* des: duplicate the NBS Data Encryption Standard in software. * * Permutation algorithm: * The permutation is defined by its effect on each of the 16 nibbles * of the 64-bit input. For each nibble we give an 8-byte bit array * that has the bits in the input nibble distributed correctly. The * complete permutation involves ORing the 16 sets of 8 bytes designated * by the 16 input nibbles. Uses 16*16*8 = 2K bytes of storage for * each 64-bit permutation. 32-bit permutations (P) and expansion (E) * are done similarly, but using bytes instead of nibbles. * Should be able to use long ints, adding the masks, at a * later pass. Tradeoff: can speed 64-bit perms up at cost of slowing * down expansion or contraction operations by using 8K tables here and * decreasing the size of the other tables. * The compressions are pre-computed in 12-bit chunks, combining 2 of the * 6->4 bit compressions. * The key schedule is also precomputed. * * Jim Gillogly, May 1977 * Modified 8/84 by Jim Gillogly and Lauren Weinstein to compile with * post-1977 C compilers and systems * 8409.30 Local data declared static, functions void; interface and * validation testing removed; Richard Outerbridge. * * This program is now officially in the public domain, and is available for * any non-profit use as long as the authorship line is retained. */ void desinit(), kinit(); void sinit(), p32init(), perminit(), permute(); void iter(), f(), perm32(), expand(), contract(); static char iperm[16][16][8],fperm[16][16][8]; /* IP & IP-1 permutations*/ static char s[4][4096]; /* S1 thru S8 precomputed */ static char p32[4][256][4]; /* for permuting 32-bit f output*/ static char kn[16][6]; /* key selections */ endes(inblock,outblock) /* encrypt 64-bit inblock */ char *inblock, *outblock; { char iters[17][8]; /* workspace for each iteration */ char swap[8]; /* place to interchange L and R */ register int i; register char *s, *t; permute(inblock,iperm,iters[0]);/* apply initial permutation */ for (i=0; i<16; i++) /* 16 churning operations */ iter(i,iters[i],iters[i+1]); /* don't re-copy to save space */ s = swap; t = &iters[16][4]; /* interchange left */ *s++ = *t++; *s++ = *t++; *s++ = *t++; *s++ = *t++; t = &iters[16][0]; /* and right */ *s++ = *t++; *s++ = *t++; *s++ = *t++; *s++ = *t++; permute(swap,fperm,outblock); /* apply final permutation */ return; } dedes(inblock,outblock) /* decrypt 64-bit inblock */ char *inblock,*outblock; { char iters[17][8]; /* workspace for each iteration */ char swap[8]; /* place to interchange L and R */ register int i; register char *s, *t; permute(inblock,iperm,iters[0]);/* apply initial permutation */ for (i=0; i<16; i++) /* 16 churning operations */ iter(15-i,iters[i],iters[i+1]); /* reverse order from encrypting*/ s = swap; t = &iters[16][4]; /* interchange left */ *s++ = *t++; *s++ = *t++; *s++ = *t++; *s++ = *t++; t = &iters[16][0]; /* and right */ *s++ = *t++; *s++ = *t++; *s++ = *t++; *s++ = *t++; permute(swap,fperm,outblock); /* apply final permutation */ return; } static void permute(inblock,perm,outblock) /* permute inblock with perm */ char *inblock, *outblock; /* result into outblock,64 bits */ char perm[16][16][8]; /* 2K bytes defining perm. */ { register int i,j; register char *ib, *ob; /* ptr to input or output block */ register char *p, *q; for (i=0, ob = outblock; i<8; i++) *ob++ = 0; /* clear output block */ ib = inblock; for (j = 0; j < 16; j += 2, ib++) /* for each input nibble */ { ob = outblock; p = perm[j][(*ib >> 4) & 017]; q = perm[j + 1][*ib & 017]; for (i = 0; i < 8; i++) /* and each output byte */ *ob++ |= *p++ | *q++; /* OR the masks together*/ } return; } static char ip[] /* initial permutation P */ = { 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 }; static char fp[] /* final permutation F */ = { 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31, 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29, 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27, 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25 }; /* expansion operation matrix */ /* rwo: unused */ /* static char ei[] = { 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17, 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25, 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1 }; */ static char pc1[] /* permuted choice table (key) */ = { 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 }; static char totrot[] /* number left rotations of pc1 */ = { 1,2,4,6,8,10,12,14,15,17,19,21,23,25,27,28 }; static char pc1m[56]; /* place to modify pc1 into */ static char pcr[56]; /* place to rotate pc1 into */ static char pc2[] /* permuted choice key (table) */ = { 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 }; static char si[8][64] /* 48->32 bit compression tables*/ = { /* S[1] */ 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13, /* S[2] */ 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9, /* S[3] */ 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12, /* S[4] */ 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14, /* S[5] */ 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3, /* S[6] */ 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13, /* S[7] */ 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12, /* S[8] */ 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }; static char p32i[] /* 32-bit permutation function */ = { 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 }; void desinit() /* initialize all des arrays */ { perminit(iperm,ip); /* initial permutation */ perminit(fperm,fp); /* final permutation */ sinit(); /* compression functions */ p32init(); /* 32-bit permutation in f */ return; } static int bytebit[] /* bit 0 is left-most in byte */ = { 0200,0100,040,020,010,04,02,01 }; static int nibblebit[] = { 010,04,02,01 }; static void sinit() /* initialize s1-s8 arrays */ { register int i,j; for (i=0; i<4; i++) /* each 12-bit position */ for (j=0; j<4096; j++) /* each possible 12-bit value */ s[i][j]=(getcomp(i*2,j>>6)<<4) | (017&getcomp(i*2+1,j&077)); /* store 2 compressions per char*/ return; } static getcomp(k,v) /* 1 compression value for sinit*/ int k,v; { register int i,j; /* correspond to i and j in FIPS*/ i=((v&040)>>4)|(v&1); /* first and last bits make row */ j=(v&037)>>1; /* middle 4 bits are column */ return (int) si[k][(i<<4)+j]; /* result is ith row, jth col */ } void kinit(key) /* initialize key schedule array*/ char *key; /* 64 bits; we'll only use 56 */ { register int i,j,l; int m; for (j=0; j<56; j++) /* convert pc1 to bits of key */ { l=pc1[j]-1; /* integer bit location */ m = l & 07; /* find bit */ pc1m[j]=(key[l>>3] & /* find which key byte l is in */ bytebit[m]) /* and which bit of that byte */ ? 1 : 0; /* and store 1-bit result */ } for (i=0; i<16; i++) /* for each key sched section */ for (j=0; j<6; j++) /* and each byte of the kn */ kn[i][j]=0; /* clear it for accumulation */ for (i=0; i<16; i++) /* key chunk for each iteration */ { for (j=0; j<56; j++) /* rotate pc1 the right amount */ pcr[j] = pc1m[(l=j+totrot[i])<(j<28? 28 : 56) ? l: l-28]; /* rotate left and right halves independently */ for (j=0; j<48; j++) /* select bits individually */ if (pcr[pc2[j]-1]) /* check bit that goes to kn[j] */ { l= j & 07; kn[i][j>>3] |= bytebit[l]; } /* mask it in if it's there */ } return; } static void p32init() /* initialize 32-bit permutation*/ { register int l, j, k; int i,m; for (i=0; i<4; i++) /* each input byte position */ for (j=0; j<256; j++) /* all possible input bytes */ for (k=0; k<4; k++) /* each byte of the mask */ p32[i][j][k]=0; /* clear permutation array */ for (i=0; i<4; i++) /* each input byte position */ for (j=0; j<256; j++) /* each possible input byte */ for (k=0; k<32; k++) /* each output bit position */ { l=p32i[k]-1; /* invert this bit (0-31) */ if ((l>>3)!=i) /* does it come from input posn?*/ continue; /* if not, bit k is 0 */ if (!(j&bytebit[l&07])) continue; /* any such bit in input? */ m = k & 07; /* which bit is it? */ p32[i][j][k>>3] |= bytebit[m]; } return; } static void perminit(perm,p) /* initialize a perm array */ char perm[16][16][8]; /* 64-bit, either init or final */ char p[64]; { register int l, j, k; int i,m; for (i=0; i<16; i++) /* each input nibble position */ for (j=0; j<16; j++) /* all possible input nibbles */ for (k=0; k<8; k++) /* each byte of the mask */ perm[i][j][k]=0;/* clear permutation array */ for (i=0; i<16; i++) /* each input nibble position */ for (j = 0; j < 16; j++)/* each possible input nibble */ for (k = 0; k < 64; k++)/* each output bit position */ { l = p[k] - 1; /* where does this bit come from*/ if ((l >> 2) != i) /* does it come from input posn?*/ continue; /* if not, bit k is 0 */ if (!(j & nibblebit[l & 3])) continue; /* any such bit in input? */ m = k & 07; /* which bit is this in the byte*/ perm[i][j][k>>3] |= bytebit[m]; } return; } static void iter(num,inblock,outblock) /* 1 churning operation */ int num; /* i.e. the num-th one */ char *inblock, *outblock; /* 64 bits each */ { char fret[4]; /* return from f(R[i-1],key) */ register char *ib, *ob, *fb; /* register int i; */ /* rwo: unused */ ob = outblock; ib = &inblock[4]; f(ib, num, fret); /* the primary transformation */ *ob++ = *ib++; /* L[i] = R[i-1] */ *ob++ = *ib++; *ob++ = *ib++; *ob++ = *ib++; ib = inblock; fb = fret; /* R[i]=L[i] XOR f(R[i-1],key) */ *ob++ = *ib++ ^ *fb++; *ob++ = *ib++ ^ *fb++; *ob++ = *ib++ ^ *fb++; *ob++ = *ib++ ^ *fb++; return; } static void f(right,num,fret) /* critical cryptographic trans */ char *right, *fret; /* 32 bits each */ int num; /* index number of this iter */ { register char *kb, *rb, *bb; /* ptr to key selection &c */ char bigright[6]; /* right expanded to 48 bits */ char result[6]; /* expand(R) XOR keyselect[num] */ char preout[4]; /* result of 32-bit permutation */ kb = kn[num]; /* fast version of iteration */ bb = bigright; rb = result; expand(right,bb); /* expand to 48 bits */ *rb++ = *bb++ ^ *kb++; /* expanded R XOR chunk of key */ *rb++ = *bb++ ^ *kb++; *rb++ = *bb++ ^ *kb++; *rb++ = *bb++ ^ *kb++; *rb++ = *bb++ ^ *kb++; *rb++ = *bb++ ^ *kb++; contract(result,preout); /* use S fns to get 32 bits */ perm32(preout,fret); /* and do final 32-bit perm */ return; } static void perm32(inblock,outblock) /* 32-bit permutation at end */ char *inblock,*outblock; /* of the f crypto function */ { register int j; /* register int i; */ /* rwo: unused */ register char *ib, *ob; register char *q; ob = outblock; /* clear output block */ *ob++ = 0; *ob++ = 0; *ob++ = 0; *ob++ = 0; ib=inblock; /* ptr to 1st byte of input */ for (j=0; j<4; j++, ib++) /* for each input byte */ { q = p32[j][*ib & 0377]; ob = outblock; /* and each output byte */ *ob++ |= *q++; /* OR the 16 masks together */ *ob++ |= *q++; *ob++ |= *q++; *ob++ |= *q++; } return; } static void expand(right,bigright) /* 32 to 48 bits with E oper */ char *right,*bigright; /* right is 32, bigright 48 */ { register char *bb, *r, r0, r1, r2, r3; bb = bigright; r = right; r0 = *r++; r1 = *r++; r2 = *r++; r3 = *r++; *bb++ = ((r3 & 0001) << 7) | /* 32 */ ((r0 & 0370) >> 1) | /* 1 2 3 4 5 */ ((r0 & 0030) >> 3); /* 4 5 */ *bb++ = ((r0 & 0007) << 5) | /* 6 7 8 */ ((r1 & 0200) >> 3) | /* 9 */ ((r0 & 0001) << 3) | /* 8 */ ((r1 & 0340) >> 5); /* 9 10 11 */ *bb++ = ((r1 & 0030) << 3) | /* 12 13 */ ((r1 & 0037) << 1) | /* 12 13 14 15 16 */ ((r2 & 0200) >> 7); /* 17 */ *bb++ = ((r1 & 0001) << 7) | /* 16 */ ((r2 & 0370) >> 1) | /* 17 18 19 20 21 */ ((r2 & 0030) >> 3); /* 20 21 */ *bb++ = ((r2 & 0007) << 5) | /* 22 23 24 */ ((r3 & 0200) >> 3) | /* 25 */ ((r2 & 0001) << 3) | /* 24 */ ((r3 & 0340) >> 5); /* 25 26 27 */ *bb++ = ((r3 & 0030) << 3) | /* 28 29 */ ((r3 & 0037) << 1) | /* 28 29 30 31 32 */ ((r0 & 0200) >> 7); /* 1 */ return; } static void contract(in48,out32) /* contract f from 48 to 32 bits*/ char *in48,*out32; /* using 12-bit pieces into bytes */ { register char *c; register char *i; register int i0, i1, i2, i3, i4, i5; i = in48; i0 = *i++; i1 = *i++; i2 = *i++; i3 = *i++; i4 = *i++; i5 = *i++; c = out32; /* do output a byte at a time */ *c++ = s[0][07777 & ((i0 << 4) | ((i1 >> 4) & 017 ))]; *c++ = s[1][07777 & ((i1 << 8) | ( i2 & 0377 ))]; *c++ = s[2][07777 & ((i3 << 4) | ((i4 >> 4) & 017 ))]; *c++ = s[3][07777 & ((i4 << 8) | ( i5 & 0377 ))]; return; } /**************** End of DES algorithm uucp rel V1.0 8410.19 **************/ --- (30) --- ls -l desguts.c