[net.math] Exponant Duals

leeper@ahutb.UUCP (leeper) (03/13/85)

This is a problem I made up when I was in high school.

Define an "exponant dual" of the x to be some OTHER number y so that

	x^y = y^x

For example an exponant dual of 2 is 4 since 2 is not 4 and 

	2^4 = 4^2 = 16

For what real numbers greater than one do there exist no exponant
duals?  For what real numbers greater than one does there exist one
exponant dual?  For what real numbers greater than one do there exist
more than one exponant dual?

				Mark Leeper
				...ihnp4!ahutb!leeper

matt@oddjob.UUCP (Matt Crawford) (03/13/85)

Nun!  N chmmyr V pna fbyir!

Vs k^l = l^k, gura ya(l)/l = ya(k)/k.  Qenj gur tencu bs gur shapgvba
s(k)=ya(k).  Gur yvar guebhtu gur bevtva naq nal cbvag ba gur tencu
unf fybcr ya(k)/k.  Vs guvf yvar uvgf gjb cbvagf (k,s(k)) naq (l,s(l))
ba gur tencu gura gurl fngvfsl ya(l)/l = ya(k)/k.  Nal yvar guebhtu
gur bevtva juvpu vagrefrpgf gur tencu va gur svefg dhnqenag ng nyy
jvyy vagrefrpg vg rknpgyl gjvpr (orpnhfr bs gur pbapnivgl) hayrff vg
vf gur gnatrag yvar guebhtu (r,1).  Guhf nyy k>1 unir bar "rkcbarag
qhny" rkprcg sbe r.
_____________________________________________________
Zngg		Havirefvgl	penjsbeq@nay-zpf.necn
Penjsbeq	bs Puvpntb	vuac4!bqqwbo!zngg